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measured VSWR of both primary and secondary lines
over the frequency band.

CONCLUSIONS

General synthesis procedures have been established
for three-section and five-section symmetrical TEM-
mode directional couplers. The synthesis leads to ex-
plicit formulas for the essential parameters, i.e., the
normalized even-and odd-mode impedances, of three-
section couplers. Although explicit formulas for the
five-section couplers are not so readily obtainable, a
sufficient amount of design information (in table form)
is given for most practical coupler designs. An experi-
mental model of a five-section coupler was built and
tested, giving excellent agreement with theory.
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Theory and Tables of Optimum Symmetrical TEM-
Mode Coupled-Transmission-Line
Directional Couplers
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Abstract—New equal-ripple polynomials were determined and
applied to the synthesis of symmetrical TEM-mode coupled-trans-
mission-line directional couplers (using exact methods). Tables of
designs for symmetrical couplers of three, five, seven, and nine sec-
tions having mean couplings of —3.01, —6, —8.34, —10, and —20
dB, and having several equal-ripple tolerances in the coupling band
are presented. Symmetrical maximally-flat directional-coupler de-
signs having three, five, seven, and nine sections are also presented
to complete ‘he tables.
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I. INTRODUCTION
A. General Properties of the Couplers
ﬁ- SYMMETRICAL TEM-mode coupled-trans-

mission-line directional coupler is shown sche-
matically in Fig. 1. Note that the symmetrical
directional coupler has symmetry with respect to two
planes: Ports 1 and 2 have end-to-end svmmetry with
respect to Ports 3 and 4; Ports 2 and 3 have side-to-side
symmetry with respect to Ports 1 and 4.
A TEM-mode coupled-transmission-line directional
coupler, whether symmetrical or not, has the following

properties, when a signal generator is connected to
Port 1:

1) There is transfer of power from Port 1 to Port 2.
2) There is transfer of power from Port 1 to Port 4.
3) There is no transfer of power from Port 1 to Port 3.
4) There is no reflected wave out of Port 1.
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Iig. 1. Symmetrical TEM-mode coupled-transmission-line

directional coupler.

The symmetrical directional coupler has, in addition, the
unique and valuable property that

5) The two outputs at Ports 2 and 4 differ in phase
by 90 degrees, at all frequencies.

It is this additional property that makes symmetrical
couplers of particular importance. ‘

Designs of optimum asymmetrical directional cou-
plers of two to six sections were recently published by
Levy [1]. These coupler designs have an equal-ripple
approximation to the mean coupling. They are opti-
mum in the sense that they provide a maximum band-
width for a given number of sections, a given mean
coupling, and a given coupling tolerance. To date,
however, the exact design of optimum symmetrical
couplers, i.e., symmetrical couplers having an equal-
ripple approximation to the mean coupling, has been
limited to couplers of at most three sections [2], {3].
Although symmetrical directional couplers of more than
three sections can be synthesized on the basis of a first-
order theory [4] these designs do not maximize the
bandwidth since they do not necessarily provide an
equal-ripple approximation to the mean coupling.
Furthermore, for strong coupling, such as is required
for 3-dB couplers, the first-order theory does not
guarantee physically realizable results.

The first hurdle in the synthesis of optimum sym-
metrical couplers is to determine the appropriate equal-
ripple polynomials for the insertion-loss function of
the coupler. (These polynomials cannot be expressed in
terms of known Chebyshev polynomials, as is the case
for asymmetrical couplers.) Next, having obtained the
insertion-loss function, extract the parameters of the
coupler using exact synthesis procedures. Curves are
plotted in Figs. 2, 3, and 4, showing typical responses of
some of the five-, seven-, and nine-section 3-dB couplers
that were obtained in this work.! These curves were
calculated using the analytic expression for the coupling
response rather than from an analysis of the synthesized
couplers themselves.

i Whenever 3-db couplers are referred to, we shall mean equal
power division, i.e., 3.0103-dB coupling.
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B. Analytical Equivalence of Directional Couplers to
Stepped-Impedance Filters

In papers by Feldshtein [5], Young [3], and Levy
[6], an analytic equivalence is established between
TEM-mode directional couplers and cascaded trans-
mission lines. Briefly, the equivalence is that the re-
flected wave of the cascaded transmission lines cor-
responds to the backward-coupled wave of the direc-
tional coupler, and the transmitted wave of the cascaded
transmission lines corresponds to the forward-coupled
wave of the directional coupler. The use of this equiv-
alence reduces the synthesis of TEM-mode coupled-
transmission-line directional couplers having a pre-
scribed coupling coefficient to the synthesis of cascaded
transmission lines having a prescribed reflection co-
efhcient.

C. The Insertion-Loss Function Theorem

Riblet [7] proved a theorem concerning the condi-
tions that were necessary and sufficient if a given im-
pedance function was to be realized as a cascade of
equal-length transmission line sections. He also stated
the most general insertion-loss function for a quarter-
wave transformer (giving optimum match between
two impedance levels). Levy [6] gave the most general
insertion-loss function for the optimum asymmetrical
quarter-wave filter (used as a prototype for the opti-
mum asymmetrical TEM-mode coupler). Seidel and
Rosen [8] have stated the necessary and sufficient
conditions for making a prescribed insertion-loss func-
tion realizable as a cascade of equal-length transmis-
sion-line sections. They did for the insertion-loss func-
tion what Riblet did for the impedance function, and
they arrived at a more concise statement. We shall state
Seidel and Rosen’s theorem as follows:

The necessary and sufficient conditions that an in-
sertion-loss function L represents a homogeneous?
stepped-impedance filter is that it be a polynomial of
the form

L = L(sin? 6) 1)

and that L be a polynomial greater than or equal to
unity for all real values of 6.

D. The Symmetry Condition

The symmetry of a two-port filter is closely related to
its phase properties. It can readily be shown (by an
extension of the argument in [9], for instance) that the
necessary and sufficient condition for a two-port filter
to be symmetrical is that the phase of the transmission
coefficient and the phase of the reflection coefficient
differ by 90 degrees. This is the property that makes the
symmetrical coupler so interesting and useful.

It is shown in textbooks on network synthesis [10],

2 By homogeneous we mean that the ratios of the impedances of
the cascaded lines, and the ratios of the wavelengths in them, be
independent of frequency, cf. [20].

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

SEPTEMBER

[11] that the necessary and sufficient condition for
having an insertion-loss function represent a (lumped-
constant) symmetrical network is that the function
have the form: Unity plus the square of an odd func-
tion of frequency. By Richards’ transformation [12],
[13] we can now extend this result to resistor transmis-
sion-line circuits, including the stepped-impedance
filters under present consideration. When this is done,
it is found that the insertion-loss function is of the
form: Unity plus the square of an odd function of 6.
Combining this result with the insertion-loss theorem,
we conclude that:

The necessary and sufficient condition that an inser-
tion-loss function L represent® a symmetical homogene-
ous stepped-impedance filter, of # equal-line-length
sections, is that it be of the form [21]

L =14 [P,(sin 0)]? 2)

where P, is an odd polynomial in sin 6, of degree #.
Thus, the synthesis of a syvmmetrical directional
coupler reduces to:

1) Finding the optimum odd polynomials P, (sin )
and

3) Extracting the transmission-line impedances from
the resulting insertion-loss function.

The synthesis procedure just outlined can produce
many coupler designs, the number depending on the
degree » of P,(sin ). To obtain a symmetrical design,
it is necessary to select the complex zeros of the reflec-
tion coefficient (obtained analytically from the inser-
tion-loss function) such that symmetry with respect
to the j-axis in the complex plane is achieved. This will
be discussed further in Section I'V.

II. TABLES oF SYMMETRICAL COUPLERS

Tables of equal-ripple and maximally-flat symmet-
rical coupler designs are presented in the Appen-
dix. TEM-mode coupled-transmission-line directional
couplers are conveniently analyzed on the basis of the
even- and odd-mode impedances of the individual sec-
tions of the coupler [14]. The tables of coupler designs
presented here are, therefore, given on this basis. In
addition, the signs have been normalized so that the
product of even- and odd-mode impedances is unity;
that 1s,

ZoiZoo = 1 3)

where Z,, and Z,, are the even- and odd-mode im-
pedances, respectively. For any particular application,
the even- and odd-mode impedances are scaled by
multiplying each normalized impedance of the tables
by the value of the impedance of the terminating line.
Since Z,, may be obtained from (3), only Z,, is tabu-

% At the same time, it should be pointed out that an insertion-loss
function of the stated form can be represented by a number of net-
Wc;rks, and this theorem states that at least one of them is symmetri-
cal.
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lated. To keep the tables as compact as possible, only
one-half of the even-mode impedances for each design
are presented, since the couplers are symmetrical.

A parameter of frequent interest to the designer is
¢,, the coefficient of coupling of the ith section of the
coupler. Because (3) is normalized, the coefficient of
coupling can be obtained from the values of Z, in the
tables by the formula

(Zoe) 52 - 1

T Z 1 @

Cy

Two bandwidth definitions for directional couplers
are in common use, and both are presented in the tables
for the convenience of the reader. The fractional band-
width, denoted as w is given by

L
Jo

where f; and f, are the lower and upper frequencies at
the equal-ripple band edge (see Fig. 6), and

:fz+f1
2

w

©)

0 (6)
is the arithmetic mean of f1 and fa.

The second definition of bandwidth is the bandwidth
ratio, denoted here by B; it is given by

_ I

St
where f; and f1 are defined as before.

In the cases of maximally-flat coupler designs (Tables
A-21 to A-24) the frequencies f» and f1 used in the for-
mulas for bandwidth refer to the {requencies that are 3
dB lower than the mean coupling.

The parameters 3 and § that appear in Tables A-1
through A-20 in the Appendix, pp. 554-557, are ex-
plained by the representative coupling curve shown in
Fig. 5. The symbol M represents the mean coupling in
decibels. The symbol § represents the maximum devi-
ation (ripple value) from the mean in decibels. All de-
signs presented in the tables have each coupling section
one-quarter wavelength long at the mean frequency fo.

Symmetrical coupler designs of three sections are in-
cluded in the tables, although these designs may be
obtained from prior work by Shimizu and Jones [2] or
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Fig. 5. Typical directional coupler characteristics (the particular
curve shown represents a five-section coupler).
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Young [3]. The design values in the tables were arrived
at independently by the methods given in Section II1.
They are included only to make the tables as complete
and useful as possible. Maximally-flat coupler designs
are also presented in the tables. Exact designs of the
three-section maximally-flat coupler have been pub-
lished previously [3], but the design is included here.
The designs for maximally flat couplers of 5, 7, and 9
sections are believed to be new.

111. DeviATION OF THE TABLES

The derivation of the coupler parameters from the
given insertion-loss function is presented here. (The
derivation of the insertion-loss functions themselves
will be presented in Section IV.) The synthesis of
stepped-impedance lines from a prescribed insertion-
loss function has been adequately described in previous
papers [6], [7]. For this reason the synthesis description
here is presented as a step-by-step procedure only, and
is stated without proof.

Let P,(x) be an odd polynomial in x of degree # that
makes the function

L(x) = 1+ P} x) (8)
an equal-ripple function on the interval 0 to 1.
Letting x =sin 8, the function L(x) may be identified
as an equal-ripple insertion-loss function for a sym-
metrical cascade of transmission lines.
From (8), the magnitude squared of the reflection co-
efficient is obtained:

[T

P (x) -

L 9
14 P2x) ©)

where T is the reflection coefficient, and again x ==sin 6.
Next, using Richards’ transformation in the form
[12]

tan 6 = s/, (10)

where s is a complex variable, and j= v/ —1, the sub-
stitution

s/j

X = = sin @
V14 (s/)*

(11)

may be made for the variable x. To facilitate the com-
putations which follow, however, the transformation
(11) is accomplished in two parts:

Part 1) Replace x by $/j, where in this part §
is an intermediate variable and not
equal to j tan §

Part 2) Replace §/7 by (s/7)/~/1+(s/4)*

(12)
(13)
Equation (13) completes the transformation of (11).

Using the previous two-part transformation process,
the synthesis procedure is as follows:
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Step A: Transformation (12) is applied to (9) and the
right side of (9) is factored into the form

INGINGE)) )
16— 2)(=s = 2)
= TE/MNT(=5/) « — (14)
G =p)(=s=p)

where T'(§) is defined to be T'(s/7), 2z, is a zero of the
numerator, and p, is a zero of the denominator. Expres-
sion (14) is not stated as an equation because the neces-
sary constant factors in the numerator and denomina-
tor are excluded at this point. The factoring of (9) is
simplified by solving the lower-order equations

Pr(8/7) = 0 (15)

and
P(s/5) = L7 (16)

rather than (9) itself. It is clear that the zeros of (15)
are to be taken as double.

It can be demonstrated that where P,(x) is an odd
polynomial, the values of s that are solutions to

Pu($/5) =4 (17)
are the negative of the values of § that satisfy
P(8/7) = — J. (18)

so that it is only necessary to solve one of the equations
of (16).

Step B: Next, the zeros of the numerator and denomi-
nator are mapped into new zeros, denoted by primes,
by the transformation of (13). This is equivalent to

3

ZI e ee— 19

YTV G 19
bi

f = 20

SRV e T3 o

The reflection coefficient I'(s) is then constructed in
the following way: Zeros of the numerator of IV(s) are
chosen from the 2’ so that they are symmetrical with
respect to the j axis. This is necessary to ensure that
the network will be symmetrical. The zeros of the de-
nominator of I'V(s) are chosen from the p’ so they lie in
the left half plane. This latter selection process is neces-
sary to ensure that the reflection coefficient is analytic
in the right half plane. (Network symmetry will be
discussed in more detail subsequently.) After the zero
and pole selection is completed, the complex reflection
coefficient is constructed according to (21),

a1 (s — =)

. (21)
o 11 s - 5)
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where y5'(s) and vp’(s) are equal to the numerator and
denominator, respectively, of the right side of (21).

Step C: The constants @ and b in (21) are evaluated as
follows: An examination of (11) reveals that the point
/2 goes into /2. Furthermore, the transformation
(11) also requires that

62Tl (=s - 2)

=1

P.AA/2) = a? =t

Solving gives

(e g
L6 =0T =5 = )

The sign of @ is chosen to that vx'(s)—+0 as s—0. This
choice of sign is justified by noting that the normalized
even-mode impedances are always greater than one,
which requires the complex reflection coefficient to be
positive as s—0. Similarly, the constant » may be
found from:

(23)

a =

§=p2

(=)t + P2VD] e

(24)

n

=0 I (= p0)

=1

Step D: When

s=+ 2

has been obtained, the impedance function is deter-
mined from the relationship

(25)

From Z, the ABCD transmission matrix is con-
structed?® as follows:

A is identified with the even part of vp’ + vy,
B is identified with the odd part of vp' + &',
C is identified with the odd part of vp" — 74/,
D is identified with the even part of v’ — v4'. (26)

[t can now be seen why the zeros of IV (s) must be chosen
symmetrical with respect to the j axis. For a network to
be symmetrical it is necessary that its ABCD matrix
have 4 =D. From (26) it is seen that 4 is the even part
of vp'++vx" while D is the even part of yp’ —vx’. The
only way to ensure that 4 =D is to make v~" an odd
polynomial. Choosing the zeros of the numerator of
TI(s) to be symmetrical with respect to the j axis (and
recalling that there is a zero in the origin) forces vy’ to

! A constant premultiplier of the ABCD matrix, (1/+/1—s%)», is
neglected in the construction process.
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be an odd polynomial. Other selections of the zeros of
the numerator IV(s) will result in asymmetrical struc-
tures, although the same insertion-loss function will
result.

Step E: Next, the transmission-line impedances are
extracted from the ABCD matrix.
The first line impedance is given by the formula

As) B(s
oS B (27
C@)ls=t  D(s) 11
Next, the matrix multiplication
1 l‘ 1 —~Z1s 4 B A4 F
s =(_ _ (28)
1—32L 1 |{|c D C D
-7

is performed. The result is a new ABCD matrix, which
has the same form as the preceding A BCD matrix, ex-
cept that the new input impedance

— A+ B
Z(s) = =
C+D

(29)

is of one degree less than the preceding Z(s). The next
line impedance is given by (27),
_A(s)

’ E(*» s=1

(30)

and the reduction process of (28) is repeated.

In this way all the line impedances may be obtained.
Since the structure is symmetrical, however, it is only
necessary to perform the cycle a total of (n41)/2 times
where 7 is the (odd) number of sections in the line.

Example: A numerical example will serve to illus-
trate this synthesis procedure. The insertion-loss func-
tion of a three-section maximally-flat symmetrical
coupler with equal-power division at x =sin 0 =1 can be
shown to be®

L =1+ (155 — 0.52%)?

=1+ P3¥(x). (31)
Using Step A, we find that
Py(s/7) = 0 (32)
has double roots

:=0, 1732,  —j1.732 (33)

and that
Py(3/)) = j (34)

has roots
p = — 0.5961,  (0.2980 + j1.8073). (35)

5 The general form of maximally-flat odd polynomials is presented
in Part IV.
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Therefore, the roots of P3(3/j) = —j are
p = -+ 0.5961,

—(0.2980 + 1.8073).  (36)

Using Step B unext, it is found that the roots are
transformed into

7 =0, + (1.2247) 37)
and
p’ = 4+ 0.5120, + (1.1726 + j0.07782). (38)
From Step C,
a is found to he 1.0
b is found to be 1.414, (39)
From Step D,
A(s) = 1.0 + 4.0107s
B(s) = 5.15125 + 0.41421s°
C(s) = 215125 + 2.4142s8
D(s) = 1.0 + 4.0407s2 (40)

Last, the impedances are extracted as explained in
Step E. The results are

A1) 5.0407
== = 1,104 41
c({1)  4.5657
which is also equal to Zs,
Next, Z4 is found to be
A1)
Zy = —— = 2,943, (42)
C(1)

[V. DERIVATION OF THE EQUAL-RIPPLE AND
MAXIMALLY-FLAT POLYNOMIALS
A. Egual-Ripple Polynomials

The determination of the equal-ripple polynomials
used in the insertion-loss functions of the symmetrical
couplers is described here. This problem may be viewed
as the determination of odd polynomials of degree =
that give an equal-ripple approximation to a constant
on the interval of zero to one. The polynomials take
their last “equal-ripple value” at x =1,

Consider for an example the case of a fifth-order odd
polynomial approximating unity on 0<x<1. This is
shown in Fig. 6. It is clear from the figure that there are
two points at thich the first derivative of the poly-
nomial is zero. Let these points be denoted as x; and x,.
Because the polynomial is odd, Ps'(x) (where the prime
denotes d/dx) may be written as

P = C(a? — 22) (a2 — aa2). (43)
From (43), Ps(x) is determined by integration:
Py(x) = Cf (u? — %12 (u? — V) du. (44)
0



Py (x)

X

Fig. 6. Example of a fifth-order odd polynomial approximating
unity on the interval zero to one.

The constant C is determined by the condition that

Ps(1) = P*(see Fig. 7 for definition of P*). (43)
The result is
Py(x) = c1(x1, x2)x + 3wy, 22)a® F 5wy, 0)x5.  (46)

The coefficients ¢; are determined by the conditions that
P5(x1) = P+

Py(xs) = P~ (47)
where P* and P~ are the equal-ripple extremes (see
Fig. 7).

Before describing the solution of (47), we wish to
generalize the procedure just given. For an nth-order
odd polynomial approximating a constant on the in-
terval zero to one, we have

P/ (x) =C ﬁ (x? — z,%)

(48)
=1
where
b - n—1 (49)
2
z k
Px) =C | II @ — x2du (50)
0 =1
and
C=— £l (51)
H (u* — x%)du
0 o=l

where P,(1) equals Pt or P~ depending on the value of
n. The result of the preceding operations is an expres-
sion for P,(x) in the form

P.(x) = i cxt

=1

(52)

where ¢; are functions of the x; and all coefficients with
even ¢ are zero. The ¢, are determined by the condition
that
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Pol(x, %1, @, -+ %) |lomey, = PF
Pn(x: X1, Foy * 0 0y xk) |z=z2 = P~
Pﬂ(x7 X1y, Xy 0 0y xk) ‘x:xk = P+ or P~

depending on #. (53)

The following method was used to solve the set of non-
linear equations in (53). Considering P, as a multi-
variable function of the x, each equation of the set was
linearized by taking the first two terms of the gener-
alized Taylor expansion of the functions on the left in
(53). Initial guesses for the values of xi1, xs, + + -, xx
were substituted into the resultant linear set, and a
solution was obtained by standard methods. The new
solution was used as a second approximation to the
initial guess and the process was repeated. (This method
is equivalent to Newton’s method for a single variable
but is generalized here to the (#—1)/2 variable case
[15].) The linear set of equations takes the form

a1 @2 v ¢ G| (A by
G n o Gap ‘sz _ by, 54)
i1 < ) lek (b )
where
n—1
k = )
2

Ax; is the correction to previous x,,
b;= P*—P(x;) or P~—P(x;), whichever applies.

Also, for ¢#jand for ¢, j=1,2,3 - - - &

k3
a, = X (n odd) (55)
n=1 0%j
and forz=1,2 - . -k
ko (dc,
a;, = x” + ncﬂxﬂ“‘} , (n odd). (56)
a=1 LO¥;

This iterative method of solution was found to be a
very rapidly convergent process. In a few cases where
the initial guesses were not close to the solutions, the
iterative process still converged but gave some x, out-
side the interval zero to one.® However, these solutions
were scaled to the interval zero to one to obtain the
sought-for answers.

For cases where the polynomials are to approximate
a constant value 37, P+ may be defined as 178 where
0 is the maximum equal-ripple deviation; P~ may then
be defined as A{—4§ which gives 1I as the arithmetic

. A consideration of the set (53) of equations shows that there
exist multiple solutions outside the interval zero to one, depending
on the value of n.
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Table 1

COEFFICIENTS FOR EQUAL~RIPPLE POLYNOMIALS APPROXIMATING
UNITY ON THE INTERVAL ZERO TO ONE

8 ¢ Gy

0.1 2.1952143 - 1.2952143
0.1 3.4113700 - 5.7150991
0.1 4.6700175  ~15.3542579
0.1 594547862  -32.3085509
0.2 2.5923814 - 1.7923814
0.2 4.1112287 - 8.2285005
0.2 5.66731189 ~22.4205945
0.2 7.238206 -47.4794411

Py {X)
Py (X)

i i
Ll
E!!_E!ﬁg

frN
[

P, ()

-
e

Py(x)

-
-

o =

Fig. 7. Equal-ripple approximations to unity on the interval zero to
one (equal-ripple tolerance 0.1). (a) Third-order polynomial. (b)
Fifth-order polynomial. (c) Seventh-order polynomial. (d) Ninth-
order polynomial.

mean. Another possibility is to define P~ as 1/(M46)
which gives M as the geometric mean. For the cases
involving the synthesis of the symmetric couplers, it
was required that the coupling in decibels be an equal-
ripple function. For these cases the values of P*and P~
were defined as

1 1/2
=l
]
A(9) J
1

11/2

AM)A@) — 1S

I

(57)

{

where the function 4 (x) is defined as

8

3

137,

Cs G Cy
3.4032291
2.6907481 - 11.106507
5.6573200 - 97.6641647 39.4699070
5.3172718
6.0524481 ~ 18.4991653

138390 ~164.008299 68.3111441

P, (X)

X

(d)

_Fig. 8. Equal-ripple approximations to unity on the interval zero to
one (equal-ripple tolerance 0.2). (a) Third-order polynomial. (b)
Fifth-order polynomial. (c) Seventh-order polynomial. (d) Ninth-
order polynomial.

A (x) =antilogio(x/10).
M is the mean coupling value in decibels.
6 is the maximum deviation in decibels from the
mean coupling.

To illustrate a result of the previously described
method of obtaining equal-ripple polynomials, several
representative polynomials which approximate unity
on the interval zero to one are tabulated in Table 1, and
shown in Figs. 7 and 8. The polynomials in Table 1
approximate unity in an arithmetic-mean sense: that
is, P*=1406 and P~=1—6. The case for 6=0.1 and
0.2 are shown in Figs. 7 and 8, respectively. [Table 1
was not used to synthesize couplers, since another
equal-ripple criterion was used, as previously explained,
namely (57) and (58).]
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B. Maximally-Flat Polynomials

The derivation of the maximally-flat polynomials is
given in this part. A suitable starting point is (48)
where all s; are set equal to unity. That is,

P,/ (x) = C(x? — 1)~ (62)
Integrating (62) gives
P.(x) = sz(m — 1)rdu (63)
0
and C is evaluated by
P,(1) (64)

c— —1 .
f (u? — 1)*du
0

For the maximally-flat polynomials, P,(1) equals either
(57) or (58) with § set equal to zero.

V. DiscussionN

A. On 3.01-dB Directional Couplers as Equal Power
Splitters

In Section V the derivation of the equal-ripple poly-
nomials was described, and several possible definitions
of P+ and P~ (the equal-ripple extremes) were stated.
The particular definition that is most appropriate will
depend on the application. For the synthesis of sym-
metrical couplers, (57) and (58) were used for P+ and
P~. These definitions give an equal-ripple approxima-
tion of the mean coupling in decibels, in an arithmetic
sense. Since in applications involving couplers, spec-
ifications are usually stated in terms of decibels, these
definitions are certainly appropriate. However, in many
applications involving 3-dB couplers,” what is usually
desired is an equal power splitter. A specification like
3+0.3 dB (for example) is, therefore, not strictly ap-
propriate since it cannot apply to both output ports
simultaneously. Thus, 3+0.3 dB corresponds to a
coupling coefficient having squared magnitude be-
tween 0.4677 and 0.5370, which gives an equal-ripple
approximation (in the arithmetic mean for coupled
power) to an average of 0.5023 rather than 0.5000. The
forward power varies from 0.5323 to 0.4630, having an
arithmetic mean value of 0.4977. As the ripple devia-
tion in decibels gets larger, the arithmetic mean of the
coupling coefficient becomes even further from 0.5. In
view of this problem, consideration was given to de-
signing the “3-dB hybrids” on the basis that the squared
magnitude of the coupling coefficient be 0.560014, so
that the power division out of both ports would be
equal-ripple in the same way. It was finally decided to
stick to the conventional approach, and to synthesize
on the basis of (57) and (58). The difference in any
practical problem is small. In addition, the synthesis on

7 The designation 3-dB coupler is intended to imply equal-
power division. A more correct designation would be 3.0103-dB
coupler,
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the basis of equal-ripple coupling in decibels, i.e., on a
log basis, is in keeping with previously published work,
and is also more appropriate for other-than-3-dB
couplings.

B. Applications of Symmetrical 3-dB Couplers

Directional couplers with 3-dB coupling are power
dividers in which the power is evenly divided between
the two outputs. In general, there need not be any
particular phase relationship between the outputs. If
the two output arms are short-circuited or open-cir-
cuited in two positions where the emerging waves are
90 degrees out of phase, then the reflected waves add
up in the remaining (fourth) arm, and no power is re-
flected into the input arm. This property is very useful
for some applications, in many of which a circulator
could also have been used. Much greater bandwidths
can be realized with TEM-mode directional couplers
than with circulators, and the couplers can operate in
any frequency band. Other typical advantages may in-
clude higher isolation and better input VSWR. Ap-
plications for which symmetrical couplers are best
suited include diplexers and multiplexers, directional
filters, phase shifters, balanced mixers, duplexers,
negative-resistance amplifiers, and others in which the
90-degree phase-difference property is essential. It is
only in symmetrical couplers that two positions can be
found in the output arms where the 90-degree phase
difference is maintained independent of frequency. A
further practical advantage of symmetrical couplers is
that the strongest coupling region is in the center and
not at one end [1], [6] so that it becomes less difficult to
connect to all four ports.

C. Other Designs Realizing the Same Insertion-Loss
Function

In the synthesis procedure described in Section III,
the magnitude squared of the reflection coefficient for
real frequencies is to be generalized (by analytic con-
tinuation) to

| T |2 — T(s)T(~s).

If the symmetrical coupler is to be realized, the
numerator of I'(s) must have zeros that are symmetrical
with respect to the j axis. However, unsymmetrical
couplers can be obtained from the insertion-loss func-
tion by selecting other permissible choices for the
zeros of I'(s). For example, Levy chose all zeros of his
T'(s) to be in the left half plane, and obtained couplers
having monotonically increasing Z,, within the coupling
region. By choosing other combinations of zeros, placing
some zeros in the left half plane and others in the right
half plane, realizations are possible that have Z,,
neither monotonically increasing nor symmetrical. The
maximum number of possible realizations will depend
on the degree » of the insertion-loss polynomial.

D. Physical Realization of the Couplers
This paper is concerned only with the design of the
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circuit parameters of symmetrical couplers. For the re-
alization of the final physical dimensions, the reader is
referred to the extensive literature on the subject. He
will find a good account with many references up to 1963
in the book by Matthaei Young, and Jones [4]. For
weak to moderate coupling, coupler designs may be real-
ized with coupled round rods. Design data of Honey
[14] are appropriate for weak coupling, while the data
of Cristal [16] are more accurate for stronger coupling,
although they may be used for weak coupling also. For
moderate to tight coupling, Getsinger [17] presents
data on rectangular bars, and Cohn [18] describes an
ingenious re-entrant coupling mechanism. More re-
cently, Shelton [19] has reported some novel strip-line
configurations.

It can be shown that the even-mode impedance of
coupled TEM-mode transmission lines is always greater
than the odd-mode impedance. Because of this physical
requirement, the realizability of the stepped-impedance
prototype filter does not guarantee the realizability of
the coupler. To insure realizability of the coupler, the
impedances of the stepped-impedance prototype filter
must all be greater than (or all less than) the terminat-
ing impedance. The restrictions on the insertion-loss
polynomial that would guarantee realizability of the
coupler are, as yet, unknown. However, the requirement
that the normalized even-mode impedances of the
coupler be greater than unity is satisfied in all the
numerical solutions presented in this paper.

E. On —8.34-dB Directional Couplers

Recently, Shelton, Wolfe, and Van Wagoner [19]
presented design data and demonstrated practical tech-
niques of constructing —3.01-dB directional couplers
by connecting two —8.34-dB couplers in tandem in the
appropriate fashion. A —8.34-dB coupler is consider-
ably easier to construct than a —3.01-dB coupler, and,
therefore, the method of Shelton, Wolfe, and Van
Wagoner [19] is of practical value. It is for this reason
that the —8.34-dB coupler designs are included in the
design tables.

V1. CONCLUSIONS

Design tables of optimum symmetrical TEM-mode
coupled-transmission-line directional couplers of three,
five, seven, and nine sections were presented. The de-
signs give the maximum bandwidth for symmetrical
couplers of a given number of sections, given mean
coupling, and given coupling tolerance. To complete
the tables, designs of maximally-flat directional couplers
were also presented. An iterative method for determin-
ing new equal-ripple polvnomials was presented, and a
few examples of equal-ripple polynomials that ap-
proximate unity on the interval zero to one were given.
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EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRI CAL
—3 g1-db COUPLERS OF THREE SECTIONS

0.25

0.30

0,35

n

1.14888

1.17135

1.19039

1.,20776

1.22415

1.23992

1.25528

1.27036

1.28527

130008

1.32968

1.35942

1.38970

1.42073

1445274
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APPENDIX

TABLES OF PARAMETERS FOR SYMMETRICAL TEM-MODE
CouPLED-TRANSMISSION-LINE DIirECTIONAL COUPLERS

Table A-1 Table A-3

(z

PEre z) (Z4ny =
$au- % £-
——— 4,

7 ‘;“ 3 5 7y Z,
- L3

3.16095  0.86101  2.51187 0.05  1.06661  1,69824

3,25984  1,00760  3.03063 0410 1.07438  1.,71858

3.34089  1,10168  3.45275 0.15  1,08073  1.73468
3.01282  1,17199  3.83085 0,20 1.08644  1.74864
3.47932  1.22884  4.18429 0.25 1,09171  1.76127
3.54311  1,27572  4,52271 0,30  1,09670  1.77299
3.60495  1.31645  2.85178 0.35 1.10188  1.78405
3.66560 1,35225  5.17521 0,40 1.10606  1.79461

3,72563  1.38420  5.49559
. 5 0445  1,11058  1,80478

3.78546 1.41305 3.61489
0,50 1.11490 1.81463

3.90585 1,86353 6.45616
0.55 1.11918 1.82428

4,02894 1.50670 7.10860
0,60 1412339 1083365

4,15688 1.54840 7477966

0.65 1412754 1.84289
4,29005 1,57788 8.47591

0.70 1.13164 1.85200
4,43120 1.60798 920361

0,75 1,13570 1,8610¢

0,80 1.13973 1.86993

Table A-2 0.85 1,14373 1.87878

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL

0410

0.20

0.5C

0.60

070

0.80

0.90

1,00

—6-db QOUPLERS OF THREE SECTIONS

7
1.10298
1.12090
1.13625
1.15038
1.1038¢
1.17680
1418952
.
1.20208

1+21454

1.22698

0.90 1414770 1.,88759

(Z, =2

0.95 1.15166 1.89636

o v B
1,00 1,15560  1.90510

2,094485 0.9199¢ 2470356

2.14693 1.074Q¢ 3.31984

z)

0,76021
0.89286
0,97882
1.,04355
1.09583
1.13986
1,17796
1.21159
1.24170
1.26898
1.29391
1.31688
1.33817
1.35801
1.37658
1.39403
1.41089
1.42607
1.44084

1.45488

Table A-4

2.18999 1e17223 3.83226

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
-8.34-db COUPLERS OF THREE SECTIONS

2422636

2.612%0

2.91703

3.18211

3,42397

3.,650814

3.86595

4,07347

4.27495

4,47178

84.66502

4.,85550

5.04386

5.23063

5.41623

5.60103

5.78534

5.96943

6.15354

6433787

EVEN -MODE IMPEDANCES FOR EQUAL- REPPLE SYMMETRICAL

—10-db COUPLERS OF THREE SECTIONS

2.22865  1.24518  4.20031 z, . =2)
2,26488  1,30345  4.74258 > 7 zZ, w
2.29968  1.35201  5.1729% 0.20  1.06945  1.57423  1.03140
2.33366  1.39364  5.59673 0,40 1.08475  1,60708  1,19816
2,36724  1,43006 6401830 0.60 1.09817  1.63870  1.30282
2.40072 1.86241 644068 0.80 1411075 1.66014 1.37959
2,43431 1.89150 686621 1.00 1.122%0 1.68458 1.464020

3.12968

3.96852

4,73738

5044739

6414545
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Table A-S

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
—20-db COUPLERS OF THREE SECTICNS
(24-1 = Zx)

> 7 Zy w B
0,20 1.02070  1,14914  1,00980  3.03958
0.40 1.02497  1.15617  1.17423  3.88396
0.60 1.02866 1.16197  1,27772  4.53804
0,80 1.03208 1,16720 1,35381  5.,19011
1,00 1,03534%  1,17213  1,41398  5.82570

Table A-6
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL

-3 01-db COUPLERS OF FIVE SECTIONS
(Zb—l. = Zl>

> 7y 2y A M

0,05 1.05972 1.32624 3.81243 1.20488 4,0

0.10 1.07851 1,37268 3.97615 1.32559 4.9

3074

3118

0.15 1.0945¢ 1.40890 4.10191 1.39889 5.65437

0.20 1.1092% 1.44029 4,21023 1.451848 6.,29714

0.25 1.12318 1.46883 4,30864 149333 6.89474

0.30 1.13659 1,49551 4,40089 152748 T.46862

0,35 1.,14973 1.,52091 4,48917 1.55639 8.0

1698

0,40 1.16266 1.54541 4.57491 1.58152 8,55845

0,45 1.175487 1.56926

4,65912 1.60371 9.09367

0,50 1.18822 1.59265 4.74253 162357 9.62609

0.60 1.21370 1.63864 4,90924 1.65791  10,69292

0.70 1.23981 1.684825

5.07867 1.68691 11,77568

0.80 1426555 1.73013 5.25363 1.71196 12.88720

0,90 1429235 1.77678 5.843655 173402 14,0

1.00 1431998 1.82866 5.62978 1.75370 45,2

Table A-7
EVEN-MODE IMPEDANCES FOR EQUAL-BRIPPLE SYMMETRICAL
-6-db COUPLERS OF FIVE SECTIONS
(Zg., = Z,)

> 7 7, 7 »
0ot 1.04501 l.ZI?IZ ¢.38181 125446 4,3
0.20 1.06052 1.25302 2.46010 1.37766 S.4
0.30 1.07392 lod7yty 2.520U64 1.45202 6.2
D440 1.03633 1,30¢03 2457332 1.5054R 7,0
0.50 1.09818 1.32294 2,6215y 1.50720 7.9
0.60 1.10969 1.34262  2.66727 1.58135 A,5
0.70 1.12099 1.36140 2.78142 1.61023 9.2
0,40 1.13217 1.,37978 2,75470 1.63529 9,9
0.90 1.14328 1e39772 279760 1.65716 10,6

1.00 1415438 IR SLY] 2,84U4y 1.67673 11,3

3860

4047

4522

2738

9953

R466

33R6

5462

A242

AUR2

6721

7370
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Table A-8

FVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL

0,25

0.30

=8.3t-db COUPLERS OF FIVE SECTIONS

(Zgay = Z,)

7, Z, 7, w B
1,02538  1.14102  1,85802  1.11764  3,53328
1,03211  1.15690  1.89019  1.23188  4,20727
1.03770  1.16899  1.91418  1.30256  4.73524

1.04271 1.17918 1.93414 1.35395 5,19150
1.04737 1.18822 1.95170 1.39442 5,60527
1,05179 119648 1,96764 1.42783 5.99090
1.05602 1420817 1.98243 1.45627 6435662
1.06012 1.21182 1.99635 1.,48108 6.70767
1.06412 1.24833 2.,00960 1450296 7.08761

1.06803 1.22497 2.02232 1.52262 7.37898

1.,07187 1.,23138 2.03462 1.54083 7.70370

1.07565 1.23760 2.04658 1:55670 8.02323

1,07939 1.24367 2,05826 1.57168 8,33872
1,08309 1.24960 2.,06971 1,58554 8,65112
1.08675 1425542 2,08098 1.59844 8.96119
1.,09039 1426114 2.09210 1+63050 9.2695%

1409401 1.26678 2.,10310 1462182 9.57685

1,09761 1.27235 2.11401 1.63247 9.88347

1,10119 1.27785 2.12484 1,64253 10,18985

1.10476 1.28331 2,13562 1.65206 10,49635

Table A-O
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
~10-db COUPLERS OF FIVE SECTIONS
(Zg_ = Z))
7, 7, z w B
1.03418 1.14310 1.70922 1.34442 5.,10148

1.04784 1.,16808 1.75305 1.47118 6,56407

1.05996 1.18815 1.786805 1454675 7.62513

1.07140 1,20606 1.81943 1.,60053 9.01322

1.082a9 1.2228¢ 1.84912 1.64210 10,17639
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Table A-10

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
-90-db COUPLERS OF FIVE SECTIONS

(Z,, = 2Z)
B 7 A A “ B lable A-13
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
0,20 1.01016  1,04183  1,17873  1.32734  4,98656 -8.31-db COUPLERS OF SEVEN SECTIONS
(Zg-, = z,)
0,80 1,01406 1,04855 1,1R767  1.45350  6.31936
5 7, 7, 75 7, w B

0.60 1.01747 1.053806 1.19463 1.52888 7.49038

0.05 1.01460 1.06403 1.21141 1,99183 1,32568 4,9319
0.80 1.02066 1.05851 1.20073 1.58261 8,58338

0.10 1,02033 1.07694% 1.23301 2.03194 1.42127 5.9117
1,00 1.02371 1.00280 1420638 1462420 9.,64410

0.15 1.02519 1,08680 1.,24872 2.06076 1.47818 6.6655

Table A-11
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL 0,20 1,02963  1.09518  1,26167 2.,08436 1,51889 7,3140
~3.01-db COUPLERS OF SEVEN SECTIONS
(Zg, =2 0.25 1,03379  1,10266 1,27297  2,10489  1.55059 7.9005
0.30 1,03778  1,10953  1,28316  2,12339  1.57653 8,4458
5 7, A A z, “ B

0,35 1,04163 1,11595 1,29256 2.14048 1.59848 8,9622
0.05 1.03635 1.14905 1,50280 4.39954 1.80024 546693

Q.40 1.04538 1,12204 1.30136 2.15641 1.61749 9.4572

s

0410 1.05240 1,18406 1.567/53 4.61180 1.49705 6.9531

0,45 04905  1.12786  1.30969 L17156 63423 9.9360
0015  1,06683  1,21168  1,61640 4./7112  1,554a7 7.9780 L * 2.171 1.6342 36

0.20 1.07950 1,23561 1.65705 4.90662 1.59539 8.8860 0,50 1.05265 1.13346 1.31764 2.18606 1,64919 10,4022

0.25 1.09201 1.2578b 1.69523 5.02872 1.62715 9.7283 0.55 1.05621 1.13889 1.32528 2+20008 1.66270 10,8588

0,30 1,10419  1,27860 1,72975 S.14254  1,6%308 10.5302 0:.60  1.05972  1.18417  1.33267  2.21361  1,67500 11.3077

0435 1.11015  1.29840  1.76238  5,25103  1.67497 1{,3064 0.65 1,06320  1,14933  1.33984  2.22683  1.68629 11.7507

0,40  1.12798  1,31754  1,79367  5.35611  1,69388 12.0666 0,70  1,06666 1.15438  1,34684  2,23979  1,69672 12,1891
0,45 1.13975 1.33622 1,82600 5.45909 1.71051 12.8174 0.75 1,07009 115934 1.35368 2.25251 1,70640 12,6240
0,50 1415149  1,35457  1,85365 5.56097  1,72534 13,5637 0,80 1,07350 1.16423  1,36040 2.26506 1,71543 13,0563
0,60 1.17505  1,39069  1.91172 5.76434  1,75090 15,0578 0,85 1,07689  1.16904 1,36700 2.27746  1,72389 13,4870
0,70  1.19890  1,42658  1,96915  5.97094  1,77238 16.5728 0,90  1.08028  1.17381 137351  2.28975 1.73184 1349165

0.80 1.22323 1.46258 2.,02682 6.18437 1.,79087 18,1270 0.95 1,08365 1.17852 1.37993 2.30194 $.73934 14,3456

0,90 1.24820 1.49918 2.,08545 6.40775 1.80710 19,7360 1,00 1.08702 1,18319 1.38629 2,31408 1.74643 14,7747

1,00 1.27399 1.53668 2.14566 6.64807 1.,82155 21,8147

Table A-12

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAI
—6-db COUPLERS OF SEVEN SECTIONS

(Zg, = 2)
L2
Table A-14
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
5 7, 7, z, 7, w B ~10-db COUPLERS OF SEVEN SECTIONS
(Zg; = 2)
0,10 1.02686  1,10756  1,32930  2.62516  1,48052 6.1494
0.20 1.04246  1.1341v  1,3727¢  2.72038  1,53802 7.6583 ’ g % % Ch * s

0.30  1.05449  1.15540  1.40584  2.79246  1.50558 #.8908 0,20  1.02360  1.07622  1,20802 1.81699  1,51198 7.1965

.00 1.06580  1.17408  1.43416  2.55438  1.63645 100026 0.40  1.03597  1,09725  1.2383y  1.06715  1,61028 9.2638
0,50  1.07670  1.19128  1.45J77  2.91078  1.66506 11.0505 0.60  1.04718  1.11484  1.26213  1.,90649  1,66773 11.0383
0,60  1.U8735  1.20755  1.48387  2.96391  1,60378 12.0626 0,80  1.05/85  1.12991  1.2R298  1.96149  1,70815 12.7059

0,70 1.09/8/  1.22315  1,50642  3.,01511  1.71561 13.0553 1.00 106834 114444 1,30229  1.97446  1.73917 14,3359

0,80 1.10831 1.23439 1.,52841 3.,06523 1.73404 14,0396

0.90 1.11872 1.25331 1,54v8y 3.11484 1.75036 15.0232

1.00 1412915 1,26805 1:.57104 3.16446 1.,7A487 16,0119
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Table A-13

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
—20-db COUPLERS OF SEVEN SECTIONS

(Za_l =Z)
A Z z z, .

0,20 1.00697 1,02256 1,05976, t.20128 149853 6.9766
0.80 1.01052 1,02846 1,06767 1421112 1.59672 8.9188
0,40 1,01369 1,03320 1.07372 1.21863 1.65421 10,5678
0.80 1,01669 1.03740 1.07894 1.22515 1.69472 12,1029
1.00 1,01958 1.04129 1,08368 1+23116 1.72584 13,5903

Table A-1lo

EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLF SYMMETRICAL
=3 01-db COUPLERS OF NINE SECTIONS

(Zy, =2,

> 7, ‘, /, 7 7, " B
0,05 1.,02680 1,09163 1.,23706 166958 4,93133 1.5218 7.365
0.10 1.04112 1.,12023 1,29488 1.74863 S,18240 11,6012 9,030
0,15 1,05391 1.14328 1.33137 1.80742 5,36886 1.,6478 10,356
0.20 1.,06598 1.,16366 1.36260 1.85696 5,52658 1.,6807 11,528
0.25 1.,07763 1.18248 1,39075 1.90116 5.56814 1,7062 12,615
0,30 1.08904 1.20027 1.81691 1.94192 S5.79985 1.7269 13,649
0,35 1.10030 1.21737 1.44168 1.98035 5,%2523 1.7444 14,648
0.40 1.11149 1.23397 1.46548 2.0171% 6.08655 1,7594 15,627
0.45 1.12264 1.25023 1,88856 2.0527¢ 6.16540 1.7726 16.594
0.50 1.13379 1,26625 1.51114 2.087287 6,28296 1.7844 17,558
0,60 1.15624 1.29789 1.55536 2415551 6,51769 1.,8046 19,475
0.70 1,17908 1.32941 1,59902 2.22278 6.75638 1.8216 21,423
0.80 1.,20234 1.36147 1.68277 2.29038 7.00316 1.8362 23,821
0.90 1.22630 1.39348 1.68712 2.35918 7.26188 1.8490 25,488
1.00 1.25107 1.82660 1.73250 2.42995 7.53602 1.8608 27.644

Table A-17
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMEIRICAL
—6-db COUPLERS OF NINE SECTIONS
Zy_.,=2)

- L Z, /y 74 /s w B
0.10 1.022014 1.,06888 1.17282 1.42807 2,83542 1.5550 7.989
0,20 1.03437 1,09137 1.2073¢ 1447877 2,94305 1.6345 9.943
0.30 1,04554 1.10967 1.23393 1.51676 3,02373 1.6809 11,535
0.80 1.,05615 1.12599 1.25686 1.54902 3.09269 1.7136 12,969
0.50 1.06645 1.18137 1,27768 1.57805 3,15533  1.7389 14,319
0,60 1.07658 1.15561 1.29716 1.60504 3.21427 1.7594 15,622
0.70 1.08662 1.16957 131574 1463070 3,27103 1.7765 16.900
0.80 1.09661 1,18320 1,33370 1465546 3,32658 1.7913 18.166
0.90 1.10661 1.19661 1.35125 1.67962 3,38161 1.8042 19,431
1.00 1411663 1,20989 1,36852 1.70342 3.43663 1.8157 20,702

0,90

0.95

1.00

LVEN-MODE TMPEDANCES FOR LQUAL-RIPPLE

Tablc

A-18

SYMMETRICAL
~8.34-db COUPLERS OF NINE SECTIONS

1.4599
1.5392
1.5858
1.6190
16846
1.6656
1,6832
1.6985
1,7119
1.7238
1.7346
1,748
1.7534
1.7617
1.7694
1.7766
1.7833
1.7896
1.7955

1,801¢

1.6133
1.6927
147386
1.7708

1.7954

(Zyge, = Z,)

" Zy Z3 z, s
1,01032  1.03838  1,10598  1,27508  2,10668
1,01536  1.04904  1,12341  1,30048  2,15200
1.01974  {,05735  1.13622  1.31862  2,18413
1,02379  1.06452  1.14687  1.33341  2,21025
1.02764  1,07099  §.15622  1,34622  2,23285
1,03134  1.07697  1.16469  1.35771  2,25315
1,03494  1,08261  1,17253  1,36825  2,27180
1,03846  1.08798  1.17989  1.37809  2,28925
1,04193  1.09314  1.18687  1.38738  2,30577
1,04534  1,09813  1.19356  1.39622  2,32156
1.08872  1,10298  1.19999  1.40471  2,33677
1.05206  1.10771  1.,20622  1,41290  2,35152
1.05538  1.11234  1,21228  1.,82085  2,36589
1,05868  1.11689  1.21819  {.42858  2,37996
1.06196  1.12137  1.22398  1.43615  2,39378
1,06523  1.12579  1.22966  1.44356  2,40740
1.06849  1,13016  1,23525  1,45088  2,42087
1,07578  1,13448  1.28076  1.45802  2,43421
1.07498  1.13877  1.24620  1.46511  2.44745
1,07823  1.14302  1.25158  1.,47211  2,46063

Table A-19
EVEN-MODE IMPEDANCES FOR EQUAL-RIPPLE SYMMETRLCAL
=10-db COUPLERS OF NINF SFCTIONS
(Zyo, =7
/I Ll /§ ‘/‘4 [3
1.01889  1,05161  1.11743  1.26387  1,90628
1.03081  1,07004  1.14313  1.29777  1,96074
1.04103  1.08543  1.163a4  {.32390  2.00313
1.05127  1.09945  1.18139  1,34672  2,04073
1.06133  1.11271  1.19605  1.36779  2,07614
Table A-20

I VEN-MODE TMPEDANCES FOR EQUAL-RIPPLE SYMMETRICAL
—20-db COUPLERS OF NINE SECTJONS

1.00555

1.00886

1.01187

1.01474

1.01753

1.01529

1.02054

1.02485

1,02871

1,03232

(7‘10‘1
/'v
1.03447
1.04153
1.04700

1,05175

1.05608

)

1.074871
1.08328
1.08974
1.09527

1.10028

1.21931

1.22965

1.23748

1.28426

1.25089

1.6024

1,6818

1.7278

1.7601

1.784a8

557

6,406

T.684

.8.658

9,498

10.256

10.960

110627

12,265

12.883

13.484

14,072

14,650

15,221

15,785

16,345

16,901

17,455

18.008

18560

194111

9,345

12,016

14,303

16,450

18.547

9.061

11,571

13,697

15,674

17.588
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Table A-21

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL
COUPLERS OF THREE SECTIONS
(Z,., =2

13
~3.01 db Coupling
7 L v B
1,46466 6.47184

1.10410 2.94302

-6 db Coupling
A z, w B

1,06810 1,979118 1.37435 539334

=10 db Coupling

7, A w B
1.04110 1.50382 1,33123 4,98113
-~20 db Coupling
7, A w B
1.01260 1413350 1.30852 4.786465

Table A-22

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL
COUPLERS OF FIVE SECTIONS

(Zg_, = Z)
=3 01 db Coupling
Z Ay /3 w B
1.01034 1.1883¢7 3.28771 14569114 8.28314
=6 db Coupling
g Z 7 “ B
1.01231 1e12190 2413095 104952% 6.92473
~10 db Coupling
7, /s A w 5
1.,00755 1.072%0 1.57346 1.45978 6,404a2
=20 b Coupling
-4 @ 7y n B
1.00235 l.u?216 1.14v66 1.44104 6.,15614
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Table A-23

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL
COUPLERS OF SEVEN SECTIONS

(Zgo, =2

-3.60 db Coupling

7 Zy Zy 7, w
1.00375 1,04173 1.25855 3,55017 1.69962 9.7996
-6 db Loupling

7 e 3 % v
1.00254 1.02/v1 1.,156589 2.248311 1.,5656% 8,2100
~10 db Coupling
7 7, 7y 7, w
1.00157 1.01708 1.09855 1462369 1.53490 7.6003
~20 db Coupling
/) 7/, A /, w
1.,00049 1,00530 1.,02968 1.,16096 1,51861 7.,3092
Table A-24

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL

COUPLERS OF NINE SECTIONS

(Zygo, =2

-3.01 db Coupling

4y z, Zy zZy Zg w B
1.,0008¢ 1.01035 1,06619 1,3189¢ 3,76506 1,6703 11,131
-6 db Coupling
z, z, A 7, 7 w B
1,00055 1,00700  1,04409 1.20303  2,33294 1.6131 9,338
-10 db Coupling
Z, 7, 2y z, Zg » B
1,00038 1.00431 1.02689 1+11989 1.66324 11,5855 8.651
-26 db Coupling
Z, z, Zy 2, zg w B
1,00081 1,00135 1.00831¢ 1,03587 1.16969 1,5709 8,322



