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measured VSWR of both primary and secondary lines

over the frequency band.

CONCLUSIONS

General synthesis procedures have been established

for three-section and five-section symmetrical TEM-

mode directional couplers, The synthesis leads to ex-

plicit formulas for the essential parameters, i.e., the

normalized even-and odd-mode impedances, of three-

section couplers. Although explicit formulas for the

five-section couplers are not so readily obtainable, a

sufficient amount of design information (in table form)

is given for most practical coupler designs. An experi-

mental model of a five-section coupler was built and

tested, giving excellent agreement with theory.
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were determined and

amlied to the synthesis of svnnnetricaf TEM-mode coupled-trans-
mission-line directional couplers (using exact methods). Tables of
designs for symmetrical couplers of three, five, seven, and nine sec-
tions having mean couplings of –3.ol, –6, –8.34, – 10, and –20
dB, and having several equal-ripple tolerances in the coupling band
are presented. Symmetrical maximally-flat directional-coupler de-
signs having three, five, seven, and nine sections are also presented
to complete She tables.
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1. INTRODUCTION

A. General Properties of the Coupleys

A

SYMMETRICAL TEM-mode coupled-trans-

mission-line directional coupler is shown sche-

matically in Fig. 1. Note that the symmetrical

directional coupler has symmetry with respect to two

planes: Ports 1 and 2 have end-to-end svmmetry with

respect to Ports 3 and 4; Ports 2 and 3 have side-to-side

symmetry with respect to Ports 1 and 4.

A TEM-mode coupled-transmission-line directional

coupler, whether symmetrical or not, has the following

properties, when a signal generator is connected to

Port 1:

1) There is transfer of power from Port 1 to Port 2.

2) There is transfer of power from Port 1 to Port 4.

3) There is no transfer of power from Port 1 to Port 3.

4) There is no reflected wave out of Port 1.
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Fig. 1. Symmetrical TEM.mode coupled-transmission-line
directional coupler.
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The symmet~ical directional coupler has, in addition, the

unique and valuable property that

-Pn

5) The two outputs at Ports 2 and 4 differ in phase

by 90 degrees, at all frequencies.

It is this additional property that makes symmetrical

couplers of particular importance.

Designs of optimum asymmetrical directional cou-

plers of two to six sections were recently published by

Levy [I]. These coupler designs have an equal-ripple

approximation to the mean coupling. They are opti-

mum in the sense that they provide a maximum band-

width for a given number of sections, a given mean

coupling, and a given coupling tolerance. To date,

however, the exact design of optimum symmetrical

couplers, i.e., symmetrical couplers having an equal-

ripple approximation to the mean coupling, has been

limited to couplers of at most three sections [2], [3].

Although symmetrical directional couplers of more than

three sections can be synthesized on the basis of a first-

order theory [4] these designs dcl not maximize the

bandx,idth since they do not necessarily provide an

equal-ripple approximation to the mean coupling.

Furthermore, for strong coupling, such as is required

for 3-dB couplers, the first-order theory does not

guarantee physically realizable results.

The first hurdle in the synthesis of optimum sym-

metrical couplers is to determine the appropriate equal-

ripple polynomials for the insertion-loss function of

the coupler. (These polynomials cannot be expressed in

terms of known Chebyshev polynomials, as is the case

for asymmetrical couplers.) Next, having obtained the

insertion-loss function, extract the parameters of the

coupler using exact synthesis procedures. Curves are

plotted in Figs. 2, 3, and 4, showing typical responses of

some of the five-, seven-, and nine-section 3-d B couplers

that were obtained in this work.1 These curves were

calculated using the analytic expression for the coupling

response rather than from an analysis of the synthesized

couplers themselves.

1 \Vhenever 3-db couplers are referred to, we shall mean equal
power division, i.e., 3.0103-dB coupling.
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Fig. 2!. Theoretical responses of symmetrical five-section couplers.
(a) 0.1 cIB ripple. (b) 0.3 dB ripple. (c) 0.5 dB ripple.
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Fig. .3. Theoretical responses of symmetrical seven-section couplers,
(a) 0.1 dB ripple. (b) 0.3 dB ripple. (c) 0.5 dB ripple.
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B. Analytical Equivalence of Di~ectional Couplers to

Stepped-Impedance Filte~s

In papers by Feldshtein [5], l“oung [3], and Levy

[6], an analytic equivalence is established between

TEM-mode directional couplers and cascaded trans-

mission lines. Briefly, the equivalence is that the re-

flected wave of the cascaded transmission lines cor-

responds to the backward-coupled wave of the direc-

tional coupler, and the transmitted wave of the cascaded

transmission lines corresponds to the forward-coupled

wave of the directional coupler. The use of this equiv-

alence reduces the synthesis of TEM-mode coupled-

transmission-line directional couplers having a pre-

scribed coupling coefficient to the synthesis of cascaded

transmission lines having a prescribed reflection co-

efficient.

C. The Insertion-Loss Function Theorewz

Riblet [7] proved a theorem concerning the condi-

tions that were necessary and sufficient if a given im-

pedance function was to be realized as a cascade of

equal-length transmission line sections. He also stated

the most general insertion-loss function for a guartev-

wave t~ansformer (giving optimum match between

two impedance levels). Levy [6] gave the most general

insertion-loss function for the optimum asymmetrical

quarter-wave filter (used as a prototype for the opti-

mum asymmetrical TEM-mode coupler). Seidel and

Rosen [8] have stated the necessary and sufficient

conditions for making a prescribed insertion-loss func-

tion realizable as a cascade of equal-length transmis-

sion-line sections. They did for the insertion-loss func-

tion what Riblet did for the impedance function, and

they arrived at a more concise statement. We shall state

Seidel and Rosen’s theorem as follows:

The necessary and sufficient conditions that an in-

sertion-loss function L represents a homogeneous

stepped-impedance filter is that it be a polynomial of

the form

L = L(sin2 8) (1)

and that L be a polynomial greater than or equal to

unity for all real values of 0.

D. The Symmetry Condition

The symmetry of a two-port filter is closely related to

its phase properties. I t can readily be shown (by an

extension of the argument in [9], for instance) that the

necessary and sufficient condition for a two-port filter

to be symmetrical is that the phase of the transmission

coefficient and the phase of the reflection coefficient

differ by 90 degrees. This is the property that makes the

symmetrical coupler so interesting and useful.

It is shown in textbooks on network synthesis [10],

2 By homogeneous we mean that the ratios of the impedances of
the cascaded lines, and the ratios of the wavelengths in them, be
independent of frequency, cf. [20].

[11 ] that the necessary and sufficient condition for

having an insertion-loss function represent a (lumped-

constant) symmetrical network is that the function

have the form: Unity plus the square of an odd func-

tion of frequency. By Richards’ transformation [12],

[13] we can now extend this result to resistor transmis-

sion-line circuits, including the stepped-impedance

filters under present consideration. lVhen this is done,

it is found that the insertion-loss function is of the

form: CTnity plus the square of an odd function of 0.

Combining this result with the insertion-loss theorem,

we conclude that:

The necessary and sufficient condition that an inser-

tion-loss function L represent3 a symrnetical homogene-

ous stepped-impedance filter, of n equal-line-length

sections, is that it be of the form [21]

L = 1 + [Pn(sin o)]! (2)

where P. is an odd polynomial in sin 0, of degree n.

Thus, the synthesis of a symmetrical directional

coupler reduces to:

1) Finding the optimum odd polynomials P. (sin 0)

and

3) Extracting the transmission-line impedances from

the resulting insertion-loss function.

The synthesis procedure just outlined can produce

many coupler designs, the number depending on the

degree n of P,, (sin 0). To obtain a symmetrical design,

it is necessary to select the complex zeros of the reflec-

tion coefficient (obtained analytically from the inser-

tion-loss function) such that symmetry with respect

to the j-axis in the complex plane is achieved. This will

be discussed further in Section IV.

II. TABLES OF SY~NIETRICAI. COUPLERS

Tables of equal-ripple and maximally-flat symmet-

rical coupler designs are presented in the Appen-

dix. TEM -mode coupled-transmission-line directional

couplers are conveniently analyzed on the basis of the

even- and odd-mode impedances of the individual sec-

tions of the coupler [14]. The tables of coupler designs

presented here are, therefore, given on this basis. In

addition, the signs have been normalized so that the

product of even- and odd-mode impedances is unity;

that is,

206200 = 1 (3)

~,here Z o, and 2.0 are the even- and odd-mode im-

pedances, respectively. For any particular application,

the even- and odd-mode impedances are scaled by

multiplying each normalized impedance of the tables

by the value of the impedance of the terminating line.

Since ZOO may be obtained from (3), only Z.. is tabu -

3 At the same time, it should be pointed out that an insertion-loss
function of the stated form can be represented by a number of net-
works, and this theorem states that at least one of them is symmetri-
cal.
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lated. To keep the tables as compact as possible, only Young [3]. The design values in the tables were arrived

one-half of the even-mode impedances for each design at independently by the methods given in Section 111.

are presented, since the couplers are symmetrical. They are included only to make the tables as con-lplete

A parameter of frequent interest to the designer is and useful as possible. Maximally-flat coupler designs

c,, the coefficient of coupling of the ith section of the are also presented in the tables. Exact designs of the

coupler. Because (3) is normalized, the coefficient of three-section maximally-flat coupler have been pub-

coupling can be obtained from the values of Z.. in the lished previously [3], but the design is included here.

tables by the formula The designs for maximally flat couplers of 5, 7, and 9

(Zae) ,’-1
sections are believed to be new.

c’ = (2..),’+ 1 “
(4)

III. DIWMTION 0s? THE T.kBLE!5

Two bandwidth definitions for directional couplers

are in common use, and both are presented in the tables

for the convenience of the reader. The fractional band-

width, denoted as w is given by

,O=f-fl

f,
(5)

where fl and j“z are the low-er and upper frequencies at

the equal-ripple band edge (see Fig. 6), and

fo=fz+fl

2
(6)

is the arithmetic mean of .fl and fz.
The second definition of bandwidth is the bandwidth

ratio, denoted here by B; it is given by

(7)

The derivation of the coupler parameters from the

given insertion-loss function is presented here. (The

derivation of the insertion-loss functions themselves

will be presented in Section IV. ) The synthesis of

stepped-impedance lines from a prescribed insertion-

loss function has been adequately described in previous

papers [6], [7]. For this reason the synthesis description

here is presented as a step-by-step procedure onl!{, and

is stated without proof.

Let P.(x) be an odd polynomial in x of degree ~t that

makes the function

L(x) = 1 + P.’(f) (8)

an equal-ripple function on the interval O to 1.

Letting x = sin 0, the function L(x) may be identified

as an equal-ripple insertion-loss function for a sym-

metrical cascade of transmission lines.

From (8), the magnitude squared of the reflection co-

efficient is obtained:
where fz and .fl are defined as before.

In the cases of maximall>’-flat cou pier designs (Tables

A-2 1 to A-24) the frequencies f 2andf 1usedin the for-
I rl’ = ‘n’(x)–

1 + P,’~(%)

mulas for bandwidth refer to the frequencies that are 3

dB lower than the mean coupling. where 17 is the reflection coefficient, and

(9)

again x .:: sin 6.

The parameters M and ti that appear in Tables A-1 Next, using Richards’ transformation in the form

through A-20 in the Appendix, pp. 554–557, are ex- [~’?]

plained by the representative coupling curve shown in

Fig. 5. The symbol JI1 represents the mean coupling in
tan 0 = s/j, (lo)

decibels. The symbol ~ represents the maximum devi- \vhere s is a complex variable, and j = <— 1, the sub-
ation (ripple value) from the mean in decibels. All de- stitution
signs presented in the tables have each coupling section

one-quarter wavelength long at the mean frequency fo. s/j = sin O
Symmetrical coupler designs of three sections are in-

(11)
‘ = dl + (s/j)’

eluded in the tables, although these designs may be

obtained from prior work by Shimizu and Jones [21 or may be made for the variable x. To facilitate the com-

Fig. 5.
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Typical directional coupler characteristics (the particular
curve shown represents a five-section coupler).

putations which follow, however, the transformation

(11) is accomplished in two parts:

Part 1) Replace x by f/j, where in this part f

is an intermediate variable and not

equal to j tan f3 (12)

Part 2) Replace f/j by (s/j)/ <1+ (~/~)2 (13)

Equation (13) completes the transformation of (1 1).

[Jsing the previous two-part transformation PIYKWS,

the synthesis procedure is as follows:
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Step A: Transformation (12) is applied to (9) and the

right side of (9) is factored into the form

T(s)r(–s)

ii (f - %)(-s - %)

~ r(3/j) r(–.f/j) w ‘:1 (14)

g (f - PJ(-f - pi)

where i7(f) is defined to be I’(f/j), z, is a zero of the

numerator, and p, is a zero of the denominator. Expres-

sion (14) is not stated as an equation because the neces-

sary constant factors in the numerator and denomina-

tor are excluded at this point. The factoring of (9) is

simplified by solving the lower-order equations

P.(f/j) = o (15)

and

Pn(f/j) = * j (16)

rather than (9) itself. It is clear that the zeros of (15)

are to be taken as double.

It can be demonstrated that where P.(x) is an odd

polynomial, the values of s that are solutions to

P.(f/j) = j (17)

are the negative of the values of $ that satisfy

Pn(s/j) = – j. (18)

so that it is only necessary to solve one of the equations

of (16).

Step B: Next, the zeros of the numerator and denomi-

nator are mapped into new zeros, denoted by primes,

by the transformation of (13). This is equivalent to

~i
z,’ =

dl + (z,)’

Pi

p;=dl+(p~”

The reflection coefficient J7’ (s) is then

(19)

(20)

constructed in

the following way: Zeros of the numerator of I“(s) are

chosen from the z’ so that they are symmetrical with

respect to the j axis. This is necessary to ensure that

the network will be symmetrical. The zeros of the de-

nominator of I“(s) are chosen from the p’ so they lie in

the left half plane. This latter selection process is neces-

sary to ensure that the reflection coefficient is analytic

in the right half plane. (Network symmetry will be

discussed in more detail subsequently.) After the zero

and pole selection is completed, the complex reflection

coefficient is constructed according to (21),

n

r“(s) = ~ = 3 ‘s-‘;) (21)
7D’(s)

b fi (s – p%’)

where ~~’ (s) and “fD’ (s) are equal to the numerator and

denominator, respectively, of the right side of (21).

Step C: The constants a and b in (21) are evaluated as

follows: An examination of (11) reveals that the point

v’~ goes into @. Furthermore, the transformation

(11) also requires that

Ii (s - %’) ii (-s - a’)
pn2(@ = ~z “=1

(–l)”

. (22)
s=~ j

Solving gives

I
(-1) ’P.’({2)

1

112

(23).n

Ia= g(s-z,’)fi (-s-zt’)i

i= 1 J .$=.2

The sign of a is chosen to that ~~’(s)a+O as s~O. This

choice of sign is justified by noting that the normalized

even-mode impedances are always greater than one,

which requires the complex reflection coefficient to be

positive as s-O. Similarly, the constant b may be

found from:

b=

1

(–1)’[1 + P.’(@]

h (~ - Pi’) h (-s - Pi’)
[ *=1 ,=1

Step D: When

1/2

(24)

has been obtained, the inlpedance function is deter-

mined from the relationship

l+r’
z(s) = —

~D’ + ‘Y.V

l–r’=7D’– T4vf”
(25)

From Z, the A B CD transmission matrix is con-

structed~ as follows:

~ is identified with the even part of yD’ + y,v’,

B is identified with the odd part of ~D’ + TV’,

C is identified with the odd part of -y~’ – yY’,

D is identified with the even part of ~D’ – y4V’. (26)

It can now be seen why the zeros of I“ (s) must be chosen

symmetrical with respect to the j axis. For a network to

be symmetrical it is necessary that its AB CD matrix

have A = D. From (26) it is seen that A is the even part

of “fD’+~N’ m-bile D is the even part of ~D’ —’yN’. The

only way to ensure that A = D is to make ~*T’ an odd

polynomial. Choosing the zeros of the numerator of

r’(s) to be symmetrical with respect to the j axis (and

recalling that there is a zero in the origin) forces Y.V’ to

* A constant premultiplier of the ABCD matrix, (1/<1 —Sz)n, is
neglected in the construction process.i= 1
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be an odd polynomial. Other selections of the zeros of

the numerator I“ (s) will result in asymmetrical struc-

tures, although the same insertion-loss function will

result.

Step E: Next, the transmission-line impedances are

extracted from the A B CD matrix.

The first line impedance is given by the formula

.4 (s) B (S)

21=— —
—

c(s) .=l – D(s) .=l’

(27)

Next, the matrix multiplication

is performed. The result is a new AB CD matrix, which

has the same form as the preceding A B CD matrix, ex-

cept that the new input impedance

(29)

is of one degree less than the preceding Z(s). The next

line impedance is given by (27),

x(s)

Z,==
c($) ,=1

(30)

and the reduction process of (28) is repeated.

In this v-ay all the line impedances may be obtained.

Since the structure is symmetrical, however, it is only

necessary to perform the cycle a total of (n+ 1)/2 times

where n is the (odd) number of sections in the line.

Example: A numerical example ~will serve to illus-

trate this synthesis procedure. The insertion-loss func-

tion of a three-section maximally-flat symmetrical

coupler with equal-power division at x = sin O= 1 can be

shown to bes

L = 1 + (1.5x – 0.5x’)’

= 1 + P#(x). (31)

Using Step A, we find that

P,(f/j) = o (32)

has double roots

z= o, .jl.732, –;il.732 (33)

and that

P,(f/j) = j’ (34)

has roots

P = --0.5961, (0.2980 + jl.8073j. (35)

s The general form of maximally-flat odd polynomials is presented
in Part IV.

Therefore, the roots of

P = + 0.5961,

~~sing Step B next,

transformed into

549

P3(3/j) = –j are

– (0.2980 ~ jl.8073). (36)

it is found that the roots are

z’ = o, ~ (1.2247) (37)

and

P’ = + 0.5120, f (1.1726 ~ jO.07782). (38)

From Sfep C,

a is found to be 1.0

b is found to be 1.414. (39)

From Step D,

.4 (s) = 1.0 + 4.0407s’

B(s) = 5.1512.s + 0.41421s3

C(s) = 2.1512s + 2.4142s3

D(s) = 1.0 + 4,0407s2. (40)

Last, the impedances are extracted as explained in

Step E. The results are

A(l) 5.0407
21=—= — = 1.104

c(1) 4.5657

which is also equal to 23,

Next, Zq is found to be

x(l)
22=? = 2.943.

c(1)

(41)

(42)

1 ~. DERIVATION OI? THE lZQUAL-RIPPI.E AND

NIAXIMALLY-FLAT POLYNOMIALS

A. Equal-Rif@le Polynomials

The determination of the equal-ripple polynomials

used in the insertion-loss functions of the symmetrical

couplers is described here. This problem may be viewed

as the determination of odd polynomials of degree n

that give an equal-ripple approximation to a constant

on the interval of zero to one. The polynomials take

their last “equal-ripple value” at x = 1.

Consider for an example the case of a fifth-order odd

polynomial approximating unity on O <x:< 1. This is

shown in Fig. 6. It is clear from the figure that there are

two points at thich the first derivative of the poly-

nomial is zero. Let these points be denoted as xl and %2.

Because the polynomial is odd, Pb’ (x) (where the prime

denotes c?/dx) may be written as

P5’ = C(X2 – a?l~) (?2 – q’). (43)

From (43), P~(x) is determined by integration:

P5(X) = c
J

‘(u’ – %,’) (u’ – X,’)du. (44)
o
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P5 (x) t
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Fig. 6. Example of a fifth-order odd polynomial approximating
unity on the interval zero to one.

The constant C is determined by the condition that

Pb(l) = P+(see Fig. 7 for definition of l’+). (45)

The result is

The coefficients ci are determined by the conditions that

P5(ZJ = P+

Pb(x,) = P- (47)

where P+ and P– are the equal-ripple extremes (see

Fig. 7).

Before describing the solution of (47), we wish to

generalize the procedure just given. For an nth-order

odd polynomial approximating a constant on the in-

terval zero to one, we have

P.’(x) = c fi (z’ – %’) (48)
,= 1

where

72—1
k.—

2
(49)

.ck

Pn(z) = c J% (u’ – X,’)du (50)
o *=1

and

Pn(l)
c=

Ik

JrI (d – .v,’)du
o $=1

(51)

where P.(1) equals P+ or P– depending on the value of

n. The result of the preceding operations is an expres-

sion for P.(x) in the form

*=1

(52)

where ci are functions of the xi and all coefficients with

even i are zero. The c, are determined by the condition

that

Pn(.x, xl, %2, “ “ “ , xk) ].=z~ = P+

Pn(x, xl, X2, . , x,) I.=z, = P-

Pn(*, xl, ~z, ‘ “ “ , WJ I.=jk = P+ or P–

depending on n. (53)

The following method was used to solve the set of non-

linear equations in (53). Considering P. as a multi-

variable function of the x, each equation of the set was

linearized by taking the first two terms of the gener-

alized Taylor expansion of the functions on the left in

(53). Initial guesses for the values of x,, x2, . , ~k

were substituted into the resultant linear set, and a

solution w-as obtained by standard methods. The new

solution was used as a second approximation to the

initial guess and the process was repeated. (This method

is equivalent to Newton’s method for a single variable

but is generalized here to the (n – 1)/2 variable case

[15 ].) The linear set of equations takes the form

all a12 . . ~ al,k

a21 a22 . . . az,~

ak,l . . . a~,k

Axl’

Axz

I =
Aq ,

(54)

where

n—1
k=—

2’

Axi is the correction to previous x,,

bi = P+ –P(x~) or P––f’(xi), whichever applies,

Also, fori#jandfori, j=l, 2, 3 . k

a,, = ~, $.,,”, (n odd)
1

and fori=l,2. .k

(55)

This iterative method of solution was found to be a

very rapidly convergent process. In a few cases where

the initial guesses were not close to the solutions, the

iterative process still converged but gave some x, out-

side the interval zero to one.G However, these solutions

were scaled to the interval zero to one to obtain the

sought-for answers.

For cases where the polynomials are to approximate

a constant value M, P+ may be defined as 111+6 where

8 is the maximum equal-ripple deviation; P– may then

be defined as M – 8 which gives .W as the arithmetic

c A consideration of the set (53) of equations shows that there
exist multiple solutions outside the interval zero to one, depending
on the value of n.
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Table 1

COEFFICIENTS FOR EQUAL-RIPPLE POLYNOMIALS APPROXIMATING

UNITY ON THE INTERVAL ZERO TO ONE

2 c1 C$ C5 c, C9

0,1 2.1952143 - 1.2952143

0,1 3,4113700 - 5.7150991 3.4032291

0.1 6,670’3 175 -15.3542579 22.6907481 - )1.106507

0.1 5.945 i7862 -32,3085509 85.6573300 - 97.6641641 39,4699070

0.2 2.5923814 - 1.7923814

0,2 4,1112287 - 8.2285005 5.3172718

0.2 5.66731189 -22.4205945 36.0524481 - 18.4991655

0.2 7,.238206 -47,4194411 137.138390 -164,008299 68,3111441

!551

●
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Fig. 7. Equal-ripple approximatiolls tounity or~theinterval zero to
one (equal-ripple tolerance 0.1). (a) Third-order polynomial. (b)
Fifth-order polynomial. (c) Seventh-order polynomial. (d) Ninth-
order polynomial.

mean. Another possibility is to define P– as l/(lk+8)

which gives M as the geometric mean. For the cases

involving the synthesis of the symmetric couplers, it

was required that the coupling in decibels be an equal-

ripple f-unction. For these ~ase~ the values of P+ and P–

were defined as

{

1 —1 “2
p = A(M)A(6) – If’

where the function A (x) is defined as

(57)

14

12

10

0.4

0.2

0

x

(a)

1.4

12

1.0

04

0.2

n

“0 02 0,4 06 08 10
x

(c)

(;)

“0 0,2 0.4 06 0.S 10
x

(d)

Fig. 8. Equal-ripple approximations to unity on the interval zero to
one (equal-ripple tolerance 0.2). (a) Third-order polynomial. (b)
>-if th-order polynomial. (c) Seventh-order polynomial. (d) Ninth-
m-der polynomial.

A (x)= antilog~O(x/10).

M is the mean coupling value in decibels.

~ is the maximum deviation in decibels from the

mean coupling.

To illustrate a result of the previously described

method of obtaining equal-ripple polynomials, several

representative polynomials which approximate unity

on the interval zero to one are tabulated in Table 1, and

shown in Figs. 7 and 8. The polynomials in Table 1

approximate umty in an arithmetic-mean sense: t]hat

is, P+= 1+8 and P–=1—6. The case for 6 =0.1 and

0.2 are shown in Figs. 7 and 8, respectively. [Table 1

~Iras not used to synthesize couplers, since another

equal-ripple criterion was used, as previously explained,

namely (57) and (58). ]
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B. Maximally-Flat Polynomials

The derivation of the maximally-flat polynomials is

given in this part. A suitable starting point is (48)

where all s; are set equal to unity. That is,

P.’(z) = c(@ – 1)~. (62)

Integrating (62) gives

J

s

P.($) = c (u’ – l)% (63)
o

and C is evaluated by

P.(l)
c= (64)

ml

J (U2 – l)kdu
o

For the maximally-flat polynomials, Pn(l) equals either

(57) or (58) with 6 set equal to zero.

V. DISCUSSION

A. On 3.01-dB Directional Couplers as Equal Power

SpMters

In Section V the derivation of the equal-ripple poly-

nomials was described, and several possible definitions

of P+ and P– (the equal-ripple extremes) were stated.

The particular definition that is most appropriate will

depend on the application. For the synthesis of sym-

metrical couplers, (57) and (58) were used for P+ and

P–. These definitions give an equal-ripple approxima-

tion of the mean coupling in decibels, in an arithmetic

sense. Since in applications involving coupIers, spec-

ifications are usually stated in terms of decibels, these

definitions are certainly appropriate. However, in many

applications involving 3-d B couplers,7 what is usually

desired is an equal power splitter. A specification like

3 f 0.3 dB (for example) is, therefore, not strictly ap-

propriate since it cannot apply to both output ports

simultaneously. Thus, 3 f 0,3 dB corresponds to a

coupling coefficient having squared magnitude be-

tween 0.4677 and 0.5370, which gives an equal-ripple

approximation (in the arithmetic mean for coupled

power) to an average of 0.5023 rather than 0.5000. The

forward power varies from 0.5323 to 0.4630, having an

arithmetic mean value of 0.4977. As the ripple devia-

tion in decibels gets larger, the arithmetic mean of the

coupling coefficient becomes even further from 0.5. In

view of this problem, consideration was given to de-

signing the ‘{3-d B hybrids)’ on the basis that the squared

magnitude of the coupling coefficient be 0.5000 +8, so

that the power division out of both ports would be

equal-ripple in the same way. It was finally decided to

stick to the conventional approach, and to synthesize

on the basis of (57) and (58). The difference in any

practical problem is small. In addition, the synthesis on

7 The designation 3-dB coupler is intended to imply equal-
power division. A more correct designation would be 3.0103-dB
couples-.

the basis of equal-ripple coupling in decibels, i.e., on a

log basis, is in keeping with previously published work,

and is also more appropriate for other-than-3-dB

couplings.

B, Applications of Symmetrical 3-dB Coupleys

Directional couplers with 3-dB coupling are power

dividers in which the power is evenly divided between

the two outputs. In general, there need not. be any

particular phase relationship between the outputs. If

the two output arms are short-circuited or open-cir-

cuited in two positions where the emerging waves are

90 degrees out of phase, then the reflected waves add

up in the remaining (fourth) arm, and no power is re-

flected into the input arm. This property is very useful

for some applications, in many of which a circulator

could also have been used. Much greater bandwidths

can be realized with TEN! -mode directional couplers

than with circulators, and the couplers can operate in

any frequency band. Other typical advantages may in-

clude higher isolation and better input VSWR. Ap-

plications for which symmetrical couplers are best

suited include diplexers and multiplexers, directional

filters, phase shifters, balanced mixers, duplexers,

negative-resistance amplifiers, and others in which the

90-degree phase-difference property is essential. It is

only in symmetrical couplers that hTo positions can be

found in the output arms where the 90-degree phase

difference is maintained independent of frequency. A

further practical advantage of symmetrical couplers is

that the strongest coupling region is in the center and

not at one end [1], [6] so that it becomes less difficult to

connect to all four ports.

C. Other Designs Realizing the Same Insevtion-Loss

Ftlnction

In the synthesis procedure described in Section III,

the magnitude squared of the reflection coefficient for

real frequencies is to be generalized (by analytic con-

tinuation) to

\ rl’~r(s)r(-s).

If the symmetrical coupler is to be realized, the

numerator of F(s) must have zeros that are symmetrical

with respect to the j axis. However, unsymmetrical

couplers can be obtained from the insertion-loss func-

tion by selecting other permissible choices for the

zeros of r(s). For example, Levy chose all zeros of his

r(s) to be in the left half plane, and obtained couplers

having monotonically increasing Z., within the coupling

region. By choosing other combinations of zeros, placing

some zeros in the left half plane and others in the right

half plane, realizations are possible that have Zo,

neither monotonically increasing nor symmetrical. The

maximum number of possible realizations will depend

on the degree n of the insertion-loss polynomial.

D. Physical Realization of the Couplers

This paper is concerned only with the design of the
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circuit parameters of symmetrical couplers. For the re-

alization of the final physical dimensions, the reader is

referred to the extensive literature on the subject. He

will find a good account with many references up to 1963

in the book by M atthaei Young, and Jones [4]. For

weak to moderate coupling, coupler designs may be real-

ized with coupled round rods. Design data of Honey

[14] are appropriate for weak coupling, while the data

of Cristal [16] are more accurate for stronger coupling,

although they may be used for weak coupling also. For

moderate to tight coupling, Getsinger [17] presents

data on rectangular bars, and Cohn [18] describes an

ingenious re-entrant coupling mechanism. Nfore re-

cently, Shelton [19 ] has reported some novel strip-line

configurations.

It can be shown that the even-mode impedance of

coupled TEM-mode transmission lines is always greater

than the odd-mode impedance. Because of this physical

requirement, the realizability of the stepped-impedance

prototype filter does not guarantee the realizability of

the coupler. To insure realizability of the coupler, the

impedances of the stepped-impedance prototype filter

must all be greater than (or all less than) the terminat-

ing impedance. The restrictions on the insertion-loss

polynomial that would guarantee realizability of the

coupler are, as yet, unknown. However, the requirement

that the normalized even-mode impedances of the

coupler be greater than unity is satisfied in all the

numerical solutions presented in this paper.

E. On – 8.34-dB Directional Couplers

Recently, Shelton, Wolfe, and Iran Wagoner [19 ]

presented design data and demonstrated practical tech-

niques of constructing – 3.01-d B directional couplers

by connecting two – 8.34-dB couplers in tandem in the

appropriate fashion. A – 8.34-dB coupler is consider-

ably easier to construct than a — 3.01-d B coupler, and,

therefore, the method of Shelton, Wolfe, and ~’an

Wagoner [19 ] is of practical value. It is for this reason

that the – 8.34-d B coupler designs are included in the

design tables.

171. CONCLUSIONS

Design tables of optimum symmetrical TEM-mode

coupled-transmission-line directional couplers of three,

five, seven, and nine sections were presented. The de-

signs give the maximum bandwidth for symmetrical

couplers of a given number of sections, given mean

coupling, and given coupling tolerance. To complete

the tables, designs of maximally-flat directional couplers

~vere also presented. An iterative method for determin-

ing new equal-ripple polynomials was presented, and a

few examples of equal-ripple polynomials that ap-

proximate unity on the interval zero to one were given.

VI 1. licKNowLkiDGMEsL’

The computer programs for obtaining equal-ripple

and maximally-flat polynomials, and for the synthesis

of the symmetrical couplers, were written by W.

rEM-MODE DIRECTIONAL COUPLERS 5s3

Wiebenson, P. Omlor and J. Ulrich, and Miss Elizabeth

Tessman.
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APPENDIX

TABLES OF PARAMETERS FOR SYMMETRICAL TEM-MoDE

COUPLED-TRANSMISSION-LINE DIRECTIONAL COUPLERS

~shl. A-1 Table 4-3

EVSh MODE IMPEDANCES FoR EQUAL-RIPPLE SYMMETK1 CAL IiVEN-NODE IUPEOANCES FOR EQUAL-RIPPLE SYMMETRICAL

– ? 01 -ah cOUPLERS OF THREE SECTIONS -8. 34-db COUPLERS OF THREE SECTIONS

0.05 1.1u1388 3.16095 U.86101 2.51181

0.10

0.15

0,20

0,25

0,30

0,35

0.00

0,45

0,50

1.17135

1.19039

1.20776

1,22415

1.23992

1.25528

1.27036

1,28527

1.30008

3,25984

3,34049

3.41242

3.47932

3.54311

3.60495

3,66560

3.72563

3.78546

1,00760

1,10168

1,17199

1.22844

1.27572

1.31645

1.35225

1,38420

1,41305

3,03063

3,45275

3.83085

4.18429

4,52271

4,85178

5.17521

5.49559

s.81489

0.60 1.32964 3.90585 1..$6353 6.45616

0.70 1,35942 4,02894 1.50670 7,10860

0.80 1,38970 4,15646 1.54040 7,77966

0,90 1.42013 4,29005 1,57788 .9.47591

1.00 1.45274 4,43120 1.60798 9.2036t

Table A-2

EVEN -MODE IMPEDANCES FoR EQUAL- RIPPLE SYMMETRI CAL

–6 db QJOPLERS OF THREE SECTIONS

(Z4. , = z,)

0.10 1.1029I3 2.09445 0.91996 2.70356

0,20 1.12U90 2.14693 1.07404 3,31984

0,30 1.13625 2.189Y9 1,17.223 3.83226

0./40 1.15.38 2.22865 1.2u51t! “.29931

0,50 1.1.38! 2.26486 1.30345 u.7u258

0,60 1.17680 2.,?9966 1.35201 5.172gl

0,7G 1.18952 2,33368 1.39364 5.59673
.

0,80 I.. odo”n 2.36124 1,43u O6 6,111830

0.90 1.21454 2.4oor2 1.46241 6.44068

1,00 1.22696 2,43431 1,49150 6.86621

s

0,05

0.10

0.15

0,20

0.25

0,30

0.3s

0,00

0,45

0.50

0.55

0,60

0.65

0,70

0,75

0,80

0,85

0,90

0,95

1.00

Z1

1,06661

1.07a34

1.00073

1.08644

1.09171

1.09670

1.10146

1.10606

1.11054

1.11U90

1.11918

1,12339

1.12754

1.13164

1,13570

1.13973

1,14373

1,14770

1.15166

1,15560

(z&., = z,)

7.2

1,69824

1.71856

1.73466

1.74864

1,76127

1.77299

1.76405

1.79461

1,80478

w

0,76021

0,89286

0,97682

1,04355

1.09563

1.1392!6

1.17796

1,21159

1,24170

n

2,22636

2,61290

2.91703

3.18211

3.02397

3.65041

3.86S95

4,07347

4.27495

,81463 1,26898 4.47178

,?32424 1.29391 4.66502

,63365 1,31688 4,85550

,04289 1.33817 5,04386

1,65200 1,356o1 5.23063

1,86101 1.37658 5,41623

1.86993 1.39403 5,60103

1.%7878 1.410.$9 5.78534

1,88759

1.09636

1.90510

Table A-4

,42607 5,96943

,44084 6,15354

.45488 6,33787

EVEN MODE IMPEDANCES FOR EQOAL - RI PPLE SYMMETRI CAL

‘IO- db COUPLERS OF THREE SECTIONS

(z,., = z,)

b ~1 71, w B

0.20 1.06945 1.57423 1.031!40 3,12968

0.40 1.00475 1,60708 1.19.516 3.98852

0.60 1.09617 1.63470 1.30282 4.73? 3.5

0,80 1.11075 1.66014 1.37959 5.44739

1.00 1.12290 1.68u5LI 1.44020 6.14545
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Table A-5

EVEN - MODE IMPEDANCES FoR EQUAL- RIPPLE SYMMETR1 CAL

’20- db COUPLERS OF 131REE SECTIC,NS

(24., = z,)

b Z, q , f!

0,20 1,02070 1.14914 1,00V80 3. U3958

0.40 1.02497 i. 15617 1.17423 3.843’96

0.60 1,02066 1,16197 I,277T2 4,33804

0,80 1,03208 1,16720 1.35361 5.19011

1.00 1,0353Q 1,17213 1.41398 5.62570

Table A-6

EVEb-hlODE Impedances FoR EQIIAL - RIPPLE SVMMfi3’RICAi.

–3 01-db CUUPLERS OF FIVE sECTIONS

b 7,

0,05 1.05972

0.10 1.0785!

0.15 1,09451

0,20 1.10921

0.25 1.12310

0,30 1.13659

0,35 1.14973

O,ao 1.16266

0.45 1.17547

0,50 1.18822

0.60 1.21370

0,70 1.23931

0,80 1.26555

0,90 1,29235

1.00 1.31998

/.

1.32624

1,37268

1.40890

1.44029

1.46803

1,49551

1.52091

1,54541

1,56926

1,59265

1,63864

1.68425

1.73013

1,77670

1.82466

(Z b., = z,)

+ “/ 13

3.61243

3.976!5

4.10191

4.21023

4,30864

4,40089

4.48917

4.5?491

4,65912

4,74253

4,90924

5.07867

5.25363

5.43655

5.62978

1.2 C1488

1.32559

1.3$ln89

1.45104

1.40333

1,5?744

1,55639

1.50152

1.60371

1.6:! 357

1,6%791

1,68691

1.71~196

1.73402

1.?!5370

4.03071

4.93114

5.65437

6.29716

6,89474

7.46462

8.01690

8,55643

9,09367

9.62609

iO.69292

11.77568

12.88720

14.03660

t5,24047

Table A-7

EVEN -MODE IMPEDANCES FOR EQUAL- RIPPLE SYMMETRI CAL

‘6-db COUPLERS OF FIVE SECTIONS,

0,1 U

0.20

0.3u

O.u!l

0.50

0.60

U.70

O.tio

0.90

1.00

/1

I.oa>ol

1.06052

1.07392

1.0$633

1.09UIN

1.1 OV69

1.1209?

1.1321?

1.14328

1.1543H

(26.; = z,)

~z 73

1.21vr& Z.3H 181

1.25302 2.46.310

I.dryiy 2.52u6H

1.40z03 2.57332

1.32294 2.6215Y

1.34L52 2.66127

1.s6140 2,11142

1.3797. 2.75UIU

l,39f7z i. 70760

1,41542’ Z,84UUU

$,

1.2’>446

1.37766

1.452 [1?

1.>0548

1.5 U7Z0

1.58135

1.01023

1 .6352q

1.65716

1.67673
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‘[,,1!1, ‘i-fl

FVEN-klODE IklPlW4NCKS [:0[{ EQU,\L-RIiW,E SYM\l ETll ICAL.

-8, 3 ~-db LOU PLKI{> OF FIVE SECF1ONS

i{

4,34522

5.ll>73n

6,29’+53

?.0s666

7.d33t36

R. 551162

9,26242

o.v6ul12

10,66721

11.37370

0.05

0.10

0.15

0,20

0,25

0,30

0.35

0,40

0.45

0.50

0.55

0,60

0.65

0,70

0,75

0,80

0.85

0.90

0,95

1.00

xi

1,02538

1,03211

1.03770

1,04271

1.04737

1,05179

1,05602

1,06012

1,06412

1.06803

1.07187

1.07565

1,07939

1,06309

1008675

1,09039

1.09401

1,09761

1.10119

1.10476

(Zh-l

Z2

1.14102

1.15690

1,16899

1.17918

1,1’s822

1.19648

1,20417

1.21102

1.21833

1,22497

1.23138

1.23760

1,24367

1.24960

1.25542

1,26114

1.26678

1.27235

1,27785

1,28331

= z,)

7;

1,85802

1,89019

1,91U18

1,93414

1.95170

1,96764

1.96243

1,99635

2,00960

2,02232

2.03462

2,04658

2,05026

2,06971

2,08098

2,09210

2,10310

2.11401

2,12484

2,13562

w

1.11764

1.2318’3

1.30256

1.35395

1039442

1.42783

1.45627

1.48104

1.50296

1.52262

1.54043

1.55670

1.57168

lo5E55d

l,5984a

1.61050

1.62162

1.63247

1.64253

1.65206

13

3.53328

4,20727

4,73524

5,19150

5,60527

5.99090

6, 35662

6,70767

7,04761

7,31898

7.70370

6,02323

8,,33872

8,,65112

8,96119

9,26959

9,57685

98,8’3347

104,18985

10,,49635

Table A-9

EVEN- MODE IMPEDANCES F?3R EQUAL- RIPPLE SYMMETR1 CAL

-10- db CDUPLERS OF FIVE SECTIONS

(Z6., = z,)

2., Z2 23
w R

0.20 1.03418 1,14310 1,70922 1.34442 5.10148

0.40 1,04184 1,16.306 1.75305 1.47118 6,56407

0.60 1,05996 1.18815 1.713d05 1,54675 7,625I3

0,80 1.07140 1.20606 1.81943 1.60053 9,01322

1.00 1.08249 1.22280 1.64912 1.64210 10.17639



556 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

Table A-IO

EVEN -MODE IMPEDANCES FOR EQUAL- RIPPLE SYMMETR1 CAL

‘!20-db CQUPLERS OF FIVE SECTIONS

(z6_z = z,)

‘lab), A-13

EVEN-MODE IMPEDANCES FOR EQUAL- RIPPLE SYMMETR1 CAl

-8.3 h db CCUPLELS OF SE\)EN SECTION\

2 ~1 ~2 L3 w H

0,20 1.01016 1. U4183 1.i7873 1,32734 4.9&656

0,40 1,01406 1.u4055 1.17! 767 1.45350 6.31936

0,60 1.0174r 1.u538b 1.19&63 1.52?388 7,49038

0.80 1,02066 1,05851 1.20073 1.58261 6,5s338

1,00 1.02371 1.00280 1,20636 1,62420 9,64410

Table A-n

EV2P - MODE IMPEDANCES FOR EQUAL-RIPPLE SYilhlETRI CAL

‘3. 01- db COUPLERS OF SEVEN SECTIONS

(Z8., ‘ z,

73

1,21141

1.23301

1,24872

1.26167

7.2

1.06403

1,07694

1.08680

1.0951U

1,10266

1,10953

1.11595

1, 12204

1.12706

1,13346

1,13889

1,14417

1.14933

1,15438

1.1593@

1,16423

1.16904

74

1.99183

w n

1,32568 4,9319

1,42127 5,9117

1.47818 6.6655

1,51889 7,3140

1.55059 7,9005

1.57653 .3,4458

i.5900.3 8,9622

1,61T49 9,4572

1,63423 9,9360

1,64919 10,4022

1.66270 10.8588

1,67500 11,3077

1.60629 11,7507

1,69672 12,1091

1,70640 1.2,6240

,
1,71543 13,0563

1,72389 13.48?0 \

1,73184 13.9165

1,73934 14,3456

1,74643 14,7747

3

0.05

0.10

0.15

0.20

0.25

0.30

0,35

0,40

0,45

0,50

0.55

0.60

0,65

0,70

0.75

0,80

0,’s5

0.90

0,95

1,00

z,

1.01460

1,02033

1,02519

1,02963

1,03379

1.03778

1,04163

1.04538

1,04905

1,05265

1,05621

1.05972

1,06320

1.06666

1,07009

1.07350

1,07689

2,03194

2.06076

2.08436

,.”.

1,2?297

1.28316

2,10489

2,12339
8 71

0,05 l,03b35

0,10 1.05240

0,15 1.06b43

0,20 1.07950

0.25 1.09201

0.30 I.1OLI!9

0,35 1.11.15

0,40 1.12796

0,45 1.13975

0,50 1.15149

0.60 1.17505

0,70 1.19’s90

0,80 1,22323

0,90 1.24820

1.00 1.27399

%

1,14905

l,1b406

1,21165

1,23581

1,25780

1.27u60

1.2;540

1.31754

1.33622

1.35457

1.39069

1,42654

1.46258

1,49918

1.53668

Z3 Z4

1.50280 4.39954

1,56/53 4.61180

1,61040 4./7112

1.65795 4.90662

1.69523 5.02877

1.72!275 5.14254

1.76238 5.25103

1.79367 5.35611

1,82400 5,45909

1.85365 5.56097

1.91172 5,76434

1,96915 5.97094

2.02682 6.18437

2,08545 6.40775

2.14566 6,64407

1+

1. Ui7024 5,6693

1.49705 6.9531

1.55447 7!9780

1,59539 8.8860

1.62715 9.7283

1. b5308 10.5302

1.67497 11,3064

1.6’? 38.5 12,0666

1.71351 12.8174

1,72534 13,5637

1.75090 15,0576

1,77230 16.5728

1.79087 18,1270

1.80710 19,7360

1.62155 21.4147

1,29256

1.30136

1.30969

2.14044

2,15641

!.

2.1715 t-

1.31764

1,32528

2.18606

2.2oooa

1.33267 2,21361

2,22683

2,23979

1.33984

1.34684

1.35368 2,25251

2.26506

2.27746

1,36040

1,36700

1.08028 1.17381 1.3?351 2,28975

1,37993

1,38629

1.08365

1.08702

1.17852

1,18319

2,30194

2,31408

Table .4.12

EVEN- MODE IMPEDANCES FOR EOUAL - RI PPLE SYMMETRI CA[

–6-db U3UPLERS OF SEVFJ SECTIONS

(z8_, = z,)

Table A-14

EVEN -MODE IMPEDANCES FOR EQUAL- RIPPLE SYMMETRI CAL

‘10-db CDUPLEHS OF SEVEN SECTIONS

(Z8.; = z,)

s 7,

0,10 1.02 b&6

%

1.10f56

1.1341.

1.15>40

1.17406

1.1912u

10 ZO755

1.2?315

l,23f139

1.25331

1,.26605

Z3

1.3293u

1.37276

1.40580

1.4341b

1.45977

1.ui536r

1.50642

1.52841

1.54*8Y

1.571OU

7i

2.62516

2.72038

2.79246

2.85438

2. VI 078

2,963’21

3. U1511

3,96523

3.11486

3.160U6

w B

1. I14(J52 6.1494

1.538,02 7.6583

1.50558 8.8906

1. b3645 10.0026

1.6h606 11,0505

1.6037d 12.0626

1.71541 13.0553

1.73U04 14.0396

1,75(136 15.0232

1,76487 16,0119

Z1 72 11 Z4 1, H

0,20 1,02360 1. U7022 1,2UO02 1.01699 1,5! 198 7,1965

0.20 1. U42U6

0.30 1.054U9

O,uu 1 .065t10

0,50 1.07b7d

0,60 1. U8735

0,70 1.09(6(

0,80 1.1 OU31

0,90 1.11872

1,00 1.12Y15

0,40 1.03597 1.09725 1.23d3$ 1,86715 1,61028 9,2638

0.60 1.04718 1.11444 1.26213 1,90649 1,66773 11.0383

---
0,80 1,05(86 1.12991 1.2829* 1,941U9 1,70615 12.7059

1.00 1,06834 1,14444 1.30229 1.97446 1,73917 14.3359



CRISTAL AND YOUNG, OPTIMUM TEM-MODE DIRECTIONAL COUPLERS !557

Table A-15

EVEN- MODE IMPEDANCES FOR EQUAL- RIPPLE SYMMETR1 CAL

‘20-db COUPLERS OF sEVEN SECTIONS

(28., = 2,)

b

0,05

0.10

0,15

0.20

0,25

0,30

0,35

0,40

0.45

0,50

0.60

O.ro

0.80

0.90

1.00

A z, % ‘3 Z4 . B

0,20 1,00697 1,02256 1,05976, 1,20128 1,49853 6,9766

0,40 1,01052 t,02946 1,06767 1.21112 1.59672 8,9188

0,60 1,01369 1,03320 1.07372 1.21863 1.65421 10.5678

0.80 1,01669 1.03740 1.07894 1.22515 1.69472 12,1029

1,00 1,01958 1.04129 1,08368 1.23116 1,72584 13,5903

Table A-16

EVFN -MODE IMPEDANCES FOR EQUAL-RI PPLF Sk MMEl HI LA[.

–? O-db COIIPLF.R> OF NINE SP.CTICINS

0.10

0.20

0,30

0,40

0,50

0.60

0,70

0,80

0.90

1.00

L, L,

1.02680 1,09163

1.04112 1 ,1202.9

1,05391 1.14328

1,06598 1.16366

k,07763 l,182a8

1.08904 1,20027

I.1OO3O 1.21737

1.11149 1,23397

1.12264 1,25023

1.13379 1.26625

1.15624 1.29789

1,17904 1.32941

1,20234 1.36117

1.22630 1.39348

1,25107 1.!42660

(Z,o. , = 21)

13 x,

1,24706 1.66958

1,29408 i,74063

1.33137 1,80742

1.36260 l,d5696

1,39075 1.90116

1.41691 1. Y4192

1.44168 1.98035

1.46548 2,01711

1.48856 2.05271

1.51114 2.08707

1.55536 2.15551

1.59902 2.22270

1.64277 2.29038

1.68712 2.35918

1.73250 2,42995

7, , 13

4,43133 1.5216 7.365

5, Izlzeo 1,6012 9.030

5,36086 1.647.S 10,356

5.52654 1,6807 11.528

5.66.51& 1,7062 12.615

5.19985 1.7269 13.649

5.$$2523 1.7444 14.640

6.0a655 1.759a 15.627

6.16540 t.7726 16.594

6.28296 1.7844 17,554

6,51769 1,8046 19.475

6.75634 1.8216 21.423

1,00316 1.8362 23.421

7,26188 1.8490 25,48.s

T.536o2 1,8604 27.644

Table A-17

EVEN-MODE [MPEDAYCES FoR EQUAL- RIPPLE S3’MMErRICAL

–6-dh COUPLERS OF NINE SECTr ONS

L,
L,

1.02201 1,06888

1.03437 1,09137

1,0Q554 1.10967

1,05615 1.1259Y

1.06645 1.141&7

1,07650 1.15.561

1.08662 1.16957

1.09661 1,18320

I,10661 1.19661

1,11663 1,20969

(Zlo-, =2 )

/3 7,

1,17282 1.42807

1.20736 i.47877

1.23393 1.51676

1.25686 1.5G902

1,27768 1.57805

1.29716 1,60504

1.31574 1.63070

1.3337U 1,65546

1.35125 1.67962

1,36852 1.70342

/;

2,2J3542

2.94305

3.02373

3.09269

3,15533

3.21427

3.27103

3.3265?

3, 38161

3,4366?

1.6365

1.6809

1,7136

1.7389

1.7594

1.7765

l,79t3

1.8042

1,81$7

1<

7.909

9,943

11,535

12,969

14,319

15.622

16.900

16,166

19,431

20.702

‘rdLl< ~-in

L! k.i!-hl[lll~ IMPEDANCES FOR LQUAL-RIPP[. I! >> MMETRI CAL

-8. 3$- LII, COIIPI, EHS OF NINE sECTION.

. /1

0,05 1,01032

0.10 1,01536

0,15 1.01974

0,20 1,02379

0.25 1,02764

0.30 1.03134

0,35 1,03494

0,40 1.03846

0.45 1,04193

0,50 1.04534

0.55 1,04672

0.60 1,05206

0,65 1.05538

0,70 1,05868

0.75 1,06196

0.60 1,06523

0.85 1.06849

0,90 1.07174

0,95 1.07498

1,00 1,07823

z,>

1,03838

1.04904

1,05735

1.06452

1,07099

1.07697

1.08261

1.08798

1.09314

1,09813

1,10298

1.10771

1,11234

1,11689

1,12137

1.1.2579

1,13016

1,13448

1.13877

1,14302

IZlo - ,

Z3

1,10596

1.12341

1,13622

1,14687

1.15622

1.16469

1.17253

1.119s9

1.18687

1.19356

1.19999

1.20622

1.21228

1.21619

1.22398

1.22966

1.23525

1,24076

1.24620

1.25158

= z,)

Z4

1,27506

1,30048

1.31862

1.33341

1.34622

1.35771

1.36825

1.3780’4

1,38738

1.39622

1.40471

1.41290

1,42085

1.42858

1,43615

1,44356

1.45084

1.45802

1.46511

1,47211

25

2,10668

2,15200

2,18413

2.21025

2.23285

2.25315

2,27180

2.28925

2,30577

2.32156

2.33677

2,35152

2.36589

2.37996

2,39378

2.407&0

2.42087

2.43421

2,44745

2,46063

w

1.4599

1,5392

1,5858

1.6190

1.6446

1,6656

1.6832

1.6985

1,7119

f.7238

1.7346

1,7444

1.7534

1.7617

1,?694

1.7766

1.7833

1.7896

1.7955

1,8011

B

6,,406

7s681

.0,,658

9,,490

10,,256

10,,960

11,,627

12<,265

12,883

13<,484

14,,072

14,,650

15,221

15$$785

16,345

16)901

17.455

1.s.008

18.560

19.111

T,hl, A-19

KVk, N-hl(lrJK lMPP, JIANCES FOR EQLIAI, - HI PP), K 5> MNP.’J’R1I &l.

e /)

0.20 1.01869

0,40 1,03041

0.60 1.04103

0.80 1.05127

1.00 1,06133

‘1o-c3I, COIIPI, ERS (JP NINF 5F[T1uN5

(z =,?)10–, t

L: I% L4 L, ,, 11

1,05161 1.11743 1.26387 1,90628 1,6133 9,,345

1.07004 1.14313 1,29777 1.96074 1.6927 12,016

1.06543 1.16344 1.32390 2.00313 1,7386 14,303

1,09945 1.18139 1,30672 2,04073 1.7708 16,450

1.11271 1,19805 1.36779 2,07614 1.7956 16,547

Table A-20

I VEh-MOJJE TM Pk:JIAN(:ES FOR EQUAI. -R IPPLJ? SYMMETRICAL

—20-dh [1)[1 PLF, RS OF NINE SE LTJONS

(7. ,.. , = z,)

h Y, /, f, I, /, Ii

0.20 1.00555 1.01529 1.03407 1.07471 1.21931 1.6024 9 <,061

0,40 1.008.96 1.02054 1.04153 1.0?3328 1.22965 1,6818 11,571

0,60 1,01187 1,02485 1.04700 %.08970 1 ,2374.9 1,7278 13,,697

0.80 1,01474 1,02871 1,05175 1.09527 1.24426 1,7601 15 <67&

1.00 1,01753 1.03232 1.05608 1.10028 1.25049 1,7848 17,568
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Tal)le A-21

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL

COUPLERS OF THREE SECTIONS

(24. , = z,)

T,ble A-23

EVEN-MODE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL

COUPLERS OF SEVEN SECTIONS

(28-, = z,)

-;.01 <lb C<>upl, !>g-3,01 <lb CO. pl,,Ig

1.10410 2,?4302 1,064466 6,4rln4 1.00375 1. U4173 1.25d55 3,55017 1,67962 9.7996”

-6 db (O UP IL” S –6 db L,,upl,i,g

7, :2 13 74 w u

1.00254 I,u?/#1 1,16589 2.24311 1,56569 8,2100I,(16bl Ll 1, Y7Y11 1.37435 5.39334

‘IO db (O, IP1, UK-10 dh Coupling

1. IJ411O 1.50382 1,33123 4.96113 1.00157 l,!JI?UM 1.0’+ 855 1.62369 1.53490 7,6003

’20 db CO,, pi i,, $
-20 db Coupling

‘/L / w2 13

l,0t260 1.1335n 1.30652 4,78465 1.00049 1,00530 1.02968 1.16096 1,51861 7,3092

Table A-22

EVEN -MOOE lMPEOANCES FOR MAXIMALLY FLAT SYMMETRICAL

COUPLERS OF FIVE SECTIONS

(z6_, = 2,)

Table A-24

EVEN -MOOE IMPEDANCES FOR MAXIMALLY FLAT SYMMETRICAL

COUPLERS OF NINE SECTIONS

(210-, = 2,)

-i 01 ,11, (’,,,,,11 ,u~ -3.01 db COup), ng

z, .+2 /3
w Ii

1.01034 1.1863/ 3.26/71 1,56911 b.2R314 1,00081 1.01035 1,06619 1,31891 3.76S06 1.6703 11,131

-6 db Coup l,ng

q Z2 % 7., Z5 w B

1.00055 1.00700 1.04409 1.20303 2,33294 1.6131 9.330

-(, <112(<>)),>1 ,1, p

4 Z2 73 ,, B

1.01231 1.12190 2,13095 I, L!9525 6.9?473

-lo ,11, (C>,z,>ltl, g

/1 /2 /-3 ,>, D

1 .oor55 1.d{290 1.>73U6 1 !4597.9 6.40402

-10 db Loupl,,, g

ZI z? ‘3 24 Z5 , B

1.00034 1.00431 1.02689 1.11989 1,66324 1.5855 8,651

-:0 cdl, (,, ,,,,1 ,,, !!

.<, /2 /\ II

1,00235 1.u?216 1.14966 1.44104 6.15614

-20 db COUpl, ng

1,00011 1,00135 1.00831 1,03587 1.16969 1,5709 8.322


